题目内容
19.计算:(1)$\frac{\sqrt{3}+\sqrt{5}}{3-\sqrt{6}-\sqrt{10}+\sqrt{15}}$
(2)$\frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$.
分析 (1)先变形为$\frac{\sqrt{3}+\sqrt{5}}{(\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{2})}$,再约分后分母有理化即可求解;
(2)先变形为$\frac{2\sqrt{6}[(\sqrt{2}+\sqrt{3})-\sqrt{5}]}{[(\sqrt{2}+\sqrt{3})+\sqrt{5}][(\sqrt{2}+\sqrt{3})-\sqrt{5}]}$,根据平方差公式计算后约分计算即可求解.
解答 解:(1)$\frac{\sqrt{3}+\sqrt{5}}{3-\sqrt{6}-\sqrt{10}+\sqrt{15}}$
=$\frac{\sqrt{3}+\sqrt{5}}{(\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{2})}$
=$\frac{1}{\sqrt{3}-\sqrt{2}}$
=$\frac{\sqrt{3}+\sqrt{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$
=$\sqrt{3}$+$\sqrt{2}$;
(2)$\frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$
=$\frac{2\sqrt{6}[(\sqrt{2}+\sqrt{3})-\sqrt{5}]}{[(\sqrt{2}+\sqrt{3})+\sqrt{5}][(\sqrt{2}+\sqrt{3})-\sqrt{5}]}$
=$\frac{2\sqrt{6}(\sqrt{2}+\sqrt{3}-\sqrt{5})}{2\sqrt{6}}$
=$\sqrt{2}$+$\sqrt{3}$-$\sqrt{5}$.
点评 本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
| A. | x≠1且x≠2 | B. | x≠1或x≠2 | C. | x=1且x=2 | D. | x=1或x=2 |