题目内容

13.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2
(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);
(4)求出(2)△A2BC2的面积是多少.

分析 (1)根据关于x轴对称的点的坐标特征,写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1
(2)利用网格特点和旋转的性质,画出点A、C的对应点A2、C2,则可得到△A2BC2
(3)C点旋转到C2点所经过的路径是以B点为圆心,BC为半径,圆心角为90°的弧,然后根据弧长公式计算即可;
(4)利用一个矩形的面积分别减去三个三角形的面积可计算出△A2BC2的面积.

解答 解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,-4);
(2)如图,△A2BC2为所作;

(3)BC=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$,
所以C点旋转到C2点所经过的路径长=$\frac{90•π•\sqrt{13}}{180}$=$\frac{\sqrt{13}}{2}$π;
(4)△A2BC2的面积=3×3-$\frac{1}{2}$×1×2-$\frac{1}{2}$×1×3-$\frac{1}{2}$×2×3=$\frac{7}{2}$.

点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网