ÌâÄ¿ÄÚÈÝ

10£®Èçͼ£¬Å×ÎïÏßy=$\frac{1}{4}$x2+bx+cÓëxÖá½»ÓÚµãA£¨-2£¬0£©£¬½»yÖáÓÚµãB£¨0£¬-$\frac{5}{2}$£©£¬Ö±Ïßy=kx+$\frac{3}{2}$¹ýµãAÓëyÖá½»ÓÚµãC£¬ÓëÅ×ÎïÏßµÄÁíÒ»¸ö½»µãΪD£®
£¨1£©Ìî¿Õ£ºb=-$\frac{3}{4}$£¬c=-$\frac{5}{2}$£¬k=$\frac{3}{4}$£»
£¨2£©ÉèµãPÊÇÖ±ÏßADÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£¨²»Í¬ÓÚA¡¢DÁ½µã£©£¬¹ýµãP×÷yÖáµÄƽÐÐÏߣ¬½»Ö±ÏßADÓÚµãM£¬×÷DE¡ÍyÖáÓÚµãE£¬Ì½¾¿£ºÊÇ·ñ´æÔÚÕâÑùµÄµãP£¬Ê¹ËıßÐÎPMECÊÇÆ½ÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬×÷PN¡ÍAD£¬Éè¡÷PMNµÄÖܳ¤Îªl£¬µãPµÄºá×ø±êΪx£¬ÇólÓëxµÄº¯Êý¹ØÏµÊ½£¬²¢Çó³ölµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣻
£¨2£©ÉèPµÄ×ø±êÊÇ£¨x£¬$\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£©£¬ÔòMµÄ×ø±êÊÇ£¨x£¬$\frac{3}{4}$x+$\frac{3}{2}$£©£¬ÔòPM=£¨ $\frac{3}{4}$x+$\frac{3}{2}$£©-£¨ $\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£©=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4£¬ÓÉEC=PMµÃµ½-$\frac{1}{4}$x2+$\frac{3}{2}$x+4=6£¬½â·½³Ì¼´¿É£»
£¨3£©Í¨¹ýÏàËÆÈý½ÇÐΡ÷PMN¡×¡÷CDEµÄÐÔÖÊÍÆÖª£ºÓÉ $\frac{¡÷PMNµÄÖܳ¤}{¡÷CEEµÄÖܳ¤}$=$\frac{PM}{DC}$ ¹¹½¨¶þ´Îº¯Êý¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©¡ßy=$\frac{1}{4}$x2+bx+c¾­¹ýµãA£¨-2£¬0£©ºÍB£¨0£¬-$\frac{5}{2}$£©
¡àÓɴ˵à $\left\{\begin{array}{l}{1-2b+c=0}\\{c=-\frac{5}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{b=-\frac{3}{4}}\\{c=-\frac{5}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽÊÇy=$\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£»
¡ßÖ±Ïßy=kx+$\frac{3}{2}$¾­¹ýµãA£¨-2£¬0£©
¡à-2k+$\frac{3}{2}$=0£¬
½âµÃ£ºk=$\frac{3}{4}$£¬
¡àÖ±ÏߵĽâÎöʽÊÇ y=$\frac{3}{4}$x+$\frac{3}{2}$£¬
¹Ê´ð°¸Îª-$\frac{3}{4}$¡¢-$\frac{5}{2}$¡¢$\frac{3}{4}$£»

£¨2£©¿ÉÇóDµÄ×ø±êÊÇ£¨8£¬7 $\frac{1}{2}$£©£¬µãCµÄ×ø±êÊÇ£¨0£¬$\frac{3}{2}$£©£¬
¡àCE=6£¬
ÉèPµÄ×ø±êÊÇ£¨x£¬$\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£©£¬ÔòMµÄ×ø±êÊÇ£¨x£¬$\frac{3}{4}$x+$\frac{3}{2}$£©
ÒòΪµãPÔÚÖ±ÏßADµÄÏ·½£¬
´ËʱPM=£¨ $\frac{3}{4}$x+$\frac{3}{2}$£©-£¨ $\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£©=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4£¬
ÓÉÓÚPM¡ÎyÖᣬҪʹËıßÐÎPMECÊÇÆ½ÐÐËıßÐΣ¬±ØÓÐPM=CE£¬
¼´-$\frac{1}{4}$x2+$\frac{3}{2}$x+4=6
½âÕâ¸ö·½³ÌµÃ£ºx1=2£¬x2=4£¬
µ±x=2ʱ£¬y=-3£¬
µ±x=4ʱ£¬y=-$\frac{3}{2}$£¬
Òò´Ë£¬Ö±ÏßADÏ·½µÄÅ×ÎïÏßÉÏ´æÔÚÕâÑùµÄµãP£¬Ê¹ËıßÐÎPMECÊÇÆ½ÐÐËıßÐΣ¬
µãPµÄ×ø±êÊÇ£¨2£¬-3£©ºÍ£¨4£¬-$\frac{3}{2}$£©£»  

£¨3£©ÔÚRt¡÷CDEÖУ¬DE=8£¬CE=6  Óɹ´¹É¶¨ÀíµÃ£ºDC=$\sqrt{{8}^{2}+{6}^{2}}$=10
¡à¡÷CDEµÄÖܳ¤ÊÇ24£¬
¡ßPM¡ÎyÖᣬ¡à¡ÏPMN=¡ÏDCE£¬
¡ß¡ÏPNM=¡ÏDEC=90¡ã£¬¡à¡÷PMN¡×¡÷CDE£¬
¡à$\frac{¡÷PMNµÄÖܳ¤}{¡÷CDEµÄÖܳ¤}$=$\frac{PM}{DC}$£¬¼´   $\frac{m}{24}$=$\frac{-\frac{1}{4}{x}^{2}+\frac{3}{2}x+4}{10}$£¬
»¯¼òÕûÀíµÃ£ºmÓëxµÄº¯Êý¹ØÏµÊ½ÊÇ£ºm=-$\frac{3}{5}$x2+$\frac{18}{5}$x+$\frac{48}{5}$£¬
m=-$\frac{3}{5}$ £¨x-3£©2+15£¬
¡ß-$\frac{3}{5}$£¼0£¬
¡àmÓÐ×î´óÖµ£¬µ±x=3ʱ£¬mµÄ×î´óÖµÊÇ15£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯ÊýµÄÓ¦Óᢴý¶¨ÏµÊý·¨¡¢Æ½ÐÐËıßÐεÄÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»á¹¹½¨¶þ´Îº¯Êý½â¾ö×îÖµÎÊÌ⣬ѧ»áÓ÷½³ÌµÄ˼Ïë˼¿¼ÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø