题目内容

15.如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD;∠ADC=90°,E为AB的中点,
(1)求证:△ADC∽△ACB;
(2)CE与AD有怎样的位置关系?试说明理由.

分析 (1)证明∠DAC=∠CAB,∠ADC=∠ACB=90,即可解决问题;
(2)根据直角三角形的性质,可得CE与AE的关系,根据等腰三角形的性质,可得∠EAC=∠ECA,根据角平分线的定义,可得∠CAD=∠CAB,根据平行线的判定,可得答案.

解答 证明:(1)∵AC平分∠DAB,
∴∠DAC=∠CAB,
∵∠ADC=∠ACB=90°,
∴△ADC∽△ACB.

(2)CE∥AD;
∵E是AB的中点,
∴CE=$\frac{1}{2}$AB=AE,
∴∠EAC=∠ECA.
∵AC平分∠DAB,
∴∠CAD=∠CAB,
∴CAD=∠ECA,
∴CE∥AD.

点评 该题主要考查了直角三角形的性质、相似三角形的判定及其性质等几何知识点及其应用问题;牢固掌握直角三角形的性质、相似三角形的判定及其性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网