题目内容
已知:如图(1),在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
小聪同学的思路是:通过证明△BDA≌△AEC,得出DA=EC,AE=BD,从而证得DE=BD+CE.
请你参考小聪同学的思路,探究并解决下列问题:
(1)如图(2),将已知中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=120°.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(2)拓展与应用:如图(3),D、E是过点A的直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
小聪同学的思路是:通过证明△BDA≌△AEC,得出DA=EC,AE=BD,从而证得DE=BD+CE.
请你参考小聪同学的思路,探究并解决下列问题:
(1)如图(2),将已知中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=120°.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(2)拓展与应用:如图(3),D、E是过点A的直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
考点:全等三角形的判定与性质,等边三角形的判定与性质
专题:
分析:(1)由∠BDA=∠AEC=∠BAC=120°就可以求出∠BAD=∠ACE,进而由AAS就可以得出△BAD≌△ACE,就可以得出BD=AE,DA=CE而得出结论;
(2)由等边三角形的性质就可以求出∠BAC=120°,就可以得出△BAD≌△ACE,就有BD=AE,进而得出△BDF≌△AEF,得出DF=EF,∠BFD=∠AFE,而得出∠DFE=60°,就有△DEF为等边三角形.
(2)由等边三角形的性质就可以求出∠BAC=120°,就可以得出△BAD≌△ACE,就有BD=AE,进而得出△BDF≌△AEF,得出DF=EF,∠BFD=∠AFE,而得出∠DFE=60°,就有△DEF为等边三角形.
解答:证明:(1)DE=BD+CE成立.
理由:∵∠BDA=∠BAC=120°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE
∴DE=AE+AD=BD+CE;
(2)△DEF为等边三角形
理由:∵△ABF和△ACF均为等边三角形
∴BF=AF=AB=AC=CF,∠BAF=∠CAF=∠ABF=60°,
∴∠BDA=∠AEC=∠BAC=120°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中
,
∴△ADB≌△CEA(AAS),
∴BD=AE,∠DBA=∠CAE.
∵∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE.
在△BDF和△AEF中
∴△DBF≌△EAF(SAS)
∴DF=EF,∠BFD=∠AFE
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°
∴△DEF为等边三角形.
理由:∵∠BDA=∠BAC=120°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中
|
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE
∴DE=AE+AD=BD+CE;
(2)△DEF为等边三角形
理由:∵△ABF和△ACF均为等边三角形
∴BF=AF=AB=AC=CF,∠BAF=∠CAF=∠ABF=60°,
∴∠BDA=∠AEC=∠BAC=120°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中
|
∴△ADB≌△CEA(AAS),
∴BD=AE,∠DBA=∠CAE.
∵∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE.
在△BDF和△AEF中
|
∴△DBF≌△EAF(SAS)
∴DF=EF,∠BFD=∠AFE
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°
∴△DEF为等边三角形.
点评:本题考查了全等三角形的判定及性质的运用.等边三角形的判定及性质的运用,等式的性质的运用,解答时证明三角形的全等是关键.
练习册系列答案
相关题目