ÌâÄ¿ÄÚÈÝ
8£®£¨1£©ÇóÏß¶ÎKQµÄ³¤¶ÈdÓëµãPÔ˶¯Ê±¼ätµÄº¯Êý½âÎöʽ£®
£¨2£©Çó¡÷CKQµÄÃæ»ýS¹ØÓÚµãPÔ˶¯Ê±¼ätµÄº¯Êý½âÎöʽ£®
·ÖÎö £¨1£©ÇóµÃÖ±ÏßBCµÄ½âÎöʽ£¬¸ù¾ÝÌâÒâµÃµ½Q£¨t£¬-$\frac{1}{2}$t+2£©£¬K£¨t£¬-$\frac{1}{4}$t2+$\frac{1}{2}t$+2£©£¬È»ºó·ÖÁ½ÖÖÇé¿öÌÖÂÛ¼´¿ÉÇóµÃ£»
£¨2£©¸ù¾ÝÌâÒâµÃµ½Cµ½Ö±ÏßPQµÄ¾àÀ룬Ȼºó¸ù¾ÝÁ½ÖÖÇé¿öÌÖÂÛ¼´¿ÉÇóµÃ£®
½â´ð ½â£ºy=-$\frac{1}{4}{x}^{2}$+$\frac{1}{2}$x+2£¬µ±x=0ʱ£¬½âµÃ£ºy=2£¬ËùÒÔOC=2£»
µ±y=0ʱ£¬0=-$\frac{1}{4}{x}^{2}$+$\frac{1}{2}$x+2£¬½âµÃ£ºx1=-2£¬x2=4£¬ËùÒÔ£ºOA=2£¬OB=4£¬
ËùÒÔ£ºA£¨-2£¬0£©£¬B£¨4£¬0£©£¬C£¨0£¬2£©£¬
£¨1£©ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬
´úÈëB¡¢CµÄ×ø±êµÃ£º$\left\{\begin{array}{l}{4k+b=0}\\{b=2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=2}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-$\frac{1}{2}$x+2£¬
¡ßPQ¡ÍxÖᣬ
Ô˶¯tÃëºó£¬Q£¨t£¬-$\frac{1}{2}$t+2£©£¬K£¨t£¬-$\frac{1}{4}$t2+$\frac{1}{2}t$+2£©£¬
¡àµ±0¡Üt£¼4ʱ£¬d=£¨-$\frac{1}{4}$t2+$\frac{1}{2}t$+2£©-£¨-$\frac{1}{2}$t+2£©=-$\frac{1}{4}$t2+t£»
µ±t¡Ý4ʱ£¬d=£¨-$\frac{1}{2}$t+2£©-£¨-$\frac{1}{4}$t2+$\frac{1}{2}t$+2£©=$\frac{1}{4}$t2-t£»
¹ÊÏß¶ÎKQµÄ³¤¶ÈdÓëµãPÔ˶¯Ê±¼ätµÄº¯Êý½âÎöʽΪd=$\left\{\begin{array}{l}{-\frac{1}{4}{t}^{2}+t£¨0¡Üt£¼4£©}\\{{\frac{1}{4}t}^{2}-t£¨t¡Ý4£©}\end{array}\right.$£»
£¨2£©µ±0¡Üt£¼4ʱ£¬Cµ½Ö±ÏßPQµÄ¾àÀëΪ£¨4-t£©£¬
¡àS=d£¨4-t£©=£¨-$\frac{1}{4}$t2+t£©£¨4-t£©=$\frac{1}{4}$t3-2t2+4t£»
µ±t¡Ý4ʱ£¬Cµ½Ö±ÏßPQµÄ¾àÀëΪ£¨t-4£©£¬
S=d£¨t-4£©=£¨-$\frac{1}{4}$t2+t£©£¨t-4£©=-$\frac{1}{4}$t3+2t2-4t£»
¹Ê¡÷CKQµÄÃæ»ýS¹ØÓÚµãPÔ˶¯Ê±¼ätµÄº¯Êý½âÎöʽΪS=$\left\{\begin{array}{l}{\frac{1}{4}{t}^{3}-2{t}^{2}+4t£¨0¡Üt£¼4£©}\\{-\frac{1}{4}{t}^{3}+2{t}^{2}-4t£¨t¡Ý4£©}\end{array}\right.$£®
µãÆÀ ±¾Ì⿼²éÁËÅ×ÎïÏßÓëxÖáµÄ½»µã£¬´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ£¬·ÖÀàÌÖÂÛ˼ÏëµÄÔËÓÃÊǽâÌâµÄ¹Ø¼ü£®