题目内容

2.如图,在正方形ABCD中,E是边AD上一点,将△ABE绕点A按逆时针方向旋转90°到△ADF的位置.已知AF=5,BE=13
(1)求DE的长度; 
(2)BE与DF是否垂直?说明你的理由.

分析 (1)根据旋转的性质得DF=BE=13,AE=AF=5,再在Rt△ADF中利用勾股定理可计算出AD=12,所以DE=AD-AE=7;
(2)延长BE交DF于H,根据旋转的性质得∠ABE=∠ADF,由于∠ADF+∠F=90°,则∠ABE+∠F=90°,根据三角形内角和定理可计算出∠FHB=90°,于是可判断BH⊥DF.

解答 解:(1)∵△ABE绕点A按逆时针方向旋转90°得到△ADF,
∴DF=BE=13,AE=AF=5,
在Rt△ADF中,∵AF=3,DF=13,
∴AD=$\sqrt{1{3}^{2}-{5}^{2}}$=12,
∴DE=AD-AE=12-5=7;
(2)BE与DF垂直.理由如下:
延长BE交DF于H,
∵△ABE绕点A按逆时针方向旋转90°得到△ADF,
∴∠ABE=∠ADF,
∵∠ADF+∠F=90°,
∴∠ABE+∠F=90°,
∴∠FHB=90°,
∴BH⊥DF.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网