题目内容
(1)计算:
+
+
+…
.
(2)已知
=
+
(0<a<1),求代数式
÷
-
的值.
| 1 | ||
1+
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
(2)已知
| x |
| a |
| 1 | ||
|
| x2+x-6 |
| x |
| x+3 |
| x2-2x |
x-2+
| ||
x-2-
|
考点:二次根式的化简求值
专题:
分析:(1)先把分母有理化,再进一步合并化简即可;
(2)先化简代数式,再进一步代入求得数值即可.
(2)先化简代数式,再进一步代入求得数值即可.
解答:解:(1)原式=
-1+
-
+
-
+…+
-
=-1+10
=9;
(2)原式=
•
-
=x2-4x+4-
=
;
∵
=
+
∴x=a+2+
∴原式=
[(a+
)2+2+(a+
)(a-
)]=a2+2;
| 2 |
| 3 |
| 2 |
| 4 |
| 3 |
| 100 |
| 99 |
=-1+10
=9;
(2)原式=
| (x+3)(x-2) |
| x |
| x(x-2) |
| x+3 |
x2-4x+4-2(x-2)
| ||
| 4 |
=x2-4x+4-
x2-4x+2-(x-2)
| ||
| 2 |
=
x2-4x+6+(x-2)
| ||
| 2 |
∵
| x |
| a |
| 1 | ||
|
∴x=a+2+
| 1 |
| a |
∴原式=
| 1 |
| 2 |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目