题目内容

如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t满足什么条件时,△BCP为直角三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
考点:勾股定理,勾股定理的逆定理
专题:动点型
分析:(1)首先利用勾股定理计算出AC长,根据题意可得CP=2cm,再利用勾股定理计算出PB的长,进而可得△ABP的周长;
(2)当P在AC上运动时△BCP为直角三角形,由此可得0<t≤4;当P在AB上时,CP⊥AB时,△BCP为直角三角形,首先计算出CP的长,然后再利用勾股定理计算出AP长,进而可得答案.
(3)分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,t+2t-3=6;当P点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,t-4+2t-8=6.
解答:解:(1)∵∠C=90°,AB=5cm,BC=3cm,
∴AC=4cm,动点P从点C开始,按C→B→A→C的路径运动,速度为每秒1cm,
∴出发2秒后,则CP=2cm,
∵∠C=90°,
∴PB=
22+32
=
13
cm,
∴△ABP的周长为:AP+PB+AB=2+5+
13
=7+
13
(cm);

(2)∵AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,
∴P在AC上运动时△BCP为直角三角形,
∴0<t≤4,
当P在AB上时,CP⊥AB时,△BCP为直角三角形,
1
2
×AB×CP=
1
2
×
AC×BC,
1
2
×5×CP=
1
2
×
3×4,
解得:CP=
12
5
cm,
∴AP=
AC2-CP2
=
16
5
cm,
∴AC+AP=
36
5
cm,
∵速度为每秒1cm,
∴t=
36
5

综上所述:当0<t≤4或t=
36
5
,△BCP为直角三角形;

(3)当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,
∵直线PQ把△ABC的周长分成相等的两部分,
∴t+2t-3=6,
∴t=2;
当P点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,
∵直线PQ把△ABC的周长分成相等的两部分,
∴t-4+2t-8=6,
∴t=6,
∴当t=2或6秒时,直线PQ把△ABC的周长分成相等的两部分.
点评:此题主要考查了勾股定理以及其逆定理等知识,利用分类讨论的思想求出是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网