题目内容

14.在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y-3,x-2y),它关于x轴的对称点A1的坐标为(x+3,y-4),关于y轴的对称点为A2
(1)求A1、A2的坐标;
(2)证明:O为线段A1A2的中点.

分析 (1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求出x、y的值,从而得到点A的坐标,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”写出点A1的坐标,根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”写出点A2的坐标;
(2)设经过OA1的直线解析式为y=kx,利用待定系数法求一次函数解析式求出直线解析式,再求出点A2在直线上,然后利用勾股定理列式求出OA1=OA2,最后根据线段中点的定义证明即可.

解答 (1)解:∵点A(2x+y-3,x-2y)与A1(x+3,y-4)关于x轴对称,
∴$\left\{\begin{array}{l}{2x+y-3=x+3}\\{x-2y=-(y-4)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$,
所以,A(8,3),
所以,A1(8,-3),A2(-8,3);

(2)证明:设经过O、A1的直线解析式为y=kx,
易得:yOA1=-$\frac{3}{8}$x,
又∵A2(-8,3),
∴A2在直线OA1上,
∴A1、O、A2在同一直线上,
由勾股定理知OA1=OA2=$\sqrt{{8}^{2}+{3}^{2}}$=$\sqrt{73}$,
∴O为线段A1A2的中点.

点评 本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网