ÌâÄ¿ÄÚÈÝ

16£®ÒÑÖªËıßÐÎABCDµÄÃæ»ýΪ1£¬OΪËıßÐÎABCDÄÚµÄÒ»µã£®
£¨1£©Èçͼ1£¬·Ö±ð×÷Oµã¹ØÓÚµãA¡¢B¡¢C¡¢DµÄ¶Ô³Æµã£¬¶ÔÓ¦µãΪA¡ä¡¢B¡ä¡¢C¡ä¡¢D¡ä£¬ÔòËıßÐÎA¡äB¡äC¡äD¡äµÄÃæ»ýΪ4£»
£¨2£©Èçͼ2£¬E¡¢F¡¢G¡¢H·Ö±ðÊÇAB¡¢BC¡¢CD¡¢DA±ßµÄÖе㣬·Ö±ð×÷Oµã¹ØÓÚµãE¡¢F¡¢G¡¢HµÄ¶Ô³Æµã£¬¶ÔÓ¦µãΪE¡ä¡¢F¡ä¡¢G¡ä¡¢H¡ä£¬ÔòËıßÐÎEFGHµÄÃæ»ýΪ$\frac{1}{2}$£»ËıßÐÎE¡äF¡äG¡äH¡äµÄÃæ»ýΪ2£®
£¨3£©Èçͼ3£¬ÈôE¡¢F¡¢G¡¢H·Ö±ðÊÇAB¡¢BC¡¢CD¡¢DA±ßÉϵĵ㣬ÇÒ$\frac{AE}{AB}$=$\frac{BF}{BC}$=$\frac{CG}{CD}$=$\frac{DH}{DA}$=$\frac{1}{x}$£®ÇëÔÚͼ3Öзֱð×÷Oµã¹ØÓÚµãE¡¢F¡¢G¡¢HµÄ¶Ô³Æµã£¨±£Áô»­Í¼ºÛ¼££©£¬¶ÔÓ¦µãE¡äF¡äG¡äH¡ä£¬ÔòÓú¬xµÄ´úÊýʽ±íʾËıßÐÎE¡äF¡äG¡äH¡äµÄÃæ»ýΪ$\frac{4{x}^{2}-8x+8}{{x}^{2}}$£®

·ÖÎö £¨1£©¸ù¾ÝÈý½ÇÐÎÖÐλÏß¶¨Àí£¬¿ÉµÃ$\frac{AB}{A'B'}$=$\frac{1}{2}$£¬ÔÙ¸ù¾ÝËıßÐÎABCDÓëËıßÐÎA'B'C'D'ÊÇÎ»ËÆÍ¼ÐΣ¬ÇÒÎ»ËÆ±ÈΪ$\frac{1}{2}$£¬¼´¿ÉµÃµ½SËıßÐÎA¡äB¡äC¡äD¡ä=1¡Á4=4£»
£¨2£©Á¬½ÓBD£¬BH£¬¸ù¾ÝE¡¢F¡¢G¡¢H·Ö±ðÊÇAB¡¢BC¡¢CD¡¢DA±ßµÄÖе㣬¿ÉµÃS¡÷AEH=$\frac{1}{2}$S¡÷ABH=$\frac{1}{2}$¡Á$\frac{1}{2}$S¡÷ABD=$\frac{1}{4}$S¡÷ABD £¬S¡÷CFG=$\frac{1}{4}$S¡÷CBD £¬S¡÷DHG+S¡÷BEF=$\frac{1}{4}$SËıßÐÎABCD £¬½ø¶øµÃµ½SËıßÐÎEFGH=£¨1-$\frac{1}{4}$¡Á2£©SËıßÐÎABCD=$\frac{1}{2}$¡Á1=$\frac{1}{2}$£¬ÔÙ¸ù¾Ý£¨1£©ÖнáÂÛ¿ÉÖª£¬SËıßÐÎE¡äF¡äG¡äH¡ä=4SËıßÐÎEFGH=4¡Á$\frac{1}{2}$=2£»
£¨3£©ÔËÓã¨2£©Öеķ½·¨£¬ÏÈÇóµÃSËıßÐÎEFGH=$\frac{{x}^{2}-2x+2}{{x}^{2}}$£¬ÔÙ¸ù¾ÝSËıßÐÎE¡äF¡äG¡äH¡ä=4SËıßÐÎEFGH½øÐмÆËã¼´¿É£®

½â´ð ½â£º£¨1£©¸ù¾Ý¶Ô³ÆÐԿɵ㬵ãAÊÇOA'µÄÖе㣬µãBʱOB'µÄÖе㣬
¡àABÊÇ¡÷A'B'OµÄÖÐλÏߣ¬
¡à$\frac{AB}{A'B'}$=$\frac{1}{2}$£¬
ÓÉÌâ¿ÉµÃ£¬ËıßÐÎABCDÓëËıßÐÎA'B'C'D'ÊÇÎ»ËÆÍ¼ÐΣ¬ÇÒÎ»ËÆ±ÈΪ$\frac{1}{2}$£¬
¡àËıßÐÎA¡äB¡äC¡äD¡äµÄÃæ»ýµÈÓÚËıßÐÎABCDµÄÃæ»ýµÄ4±¶£¬
¡àSËıßÐÎA¡äB¡äC¡äD¡ä=1¡Á4=4£¬
¹Ê´ð°¸Îª£º4£»

£¨2£©Èçͼ2£¬Á¬½ÓBD£¬BH£¬
¡ßE¡¢F¡¢G¡¢H·Ö±ðÊÇAB¡¢BC¡¢CD¡¢DA±ßµÄÖе㣬
¡àS¡÷AEH=$\frac{1}{2}$S¡÷ABH=$\frac{1}{2}$¡Á$\frac{1}{2}$S¡÷ABD=$\frac{1}{4}$S¡÷ABD £¬
ͬÀí£¬S¡÷CFG=$\frac{1}{4}$S¡÷CBD £¬
¡àS¡÷AEH+S¡÷CFG=$\frac{1}{4}$£¨S¡÷ABD+S¡÷CBD£©=$\frac{1}{4}$SËıßÐÎABCD £¬
ͬÀí¿ÉµÃ£¬S¡÷DHG+S¡÷BEF=$\frac{1}{4}$SËıßÐÎABCD £¬
¡àSËıßÐÎEFGH=£¨1-$\frac{1}{4}$¡Á2£©SËıßÐÎABCD=$\frac{1}{2}$¡Á1=$\frac{1}{2}$£¬
ÓÉ£¨1£©¿ÉÖª£¬SËıßÐÎE¡äF¡äG¡äH¡ä=4SËıßÐÎEFGH=4¡Á$\frac{1}{2}$=2£¬
¹Ê´ð°¸Îª£º$\frac{1}{2}$£¬2£»

£¨3£©Èçͼ3£¬µãE¡ä£¬F¡ä£¬G¡ä£¬H¡ä¼´ÎªËùÇó£¬
Èçͼ4£¬Á¬½ÓEF£¬FG£¬GH£¬HE£¬Á¬½ÓBD£¬BH£¬
¡ß$\frac{AE}{AB}$=$\frac{BF}{BC}$=$\frac{CG}{CD}$=$\frac{DH}{DA}$=$\frac{1}{x}$£¬
¡àS¡÷AEH=$\frac{1}{x}$S¡÷ABH=$\frac{1}{x}$¡Á$\frac{x-1}{x}$S¡÷ABD=$\frac{x-1}{{x}^{2}}$S¡÷ABD £¬
ͬÀí£¬S¡÷CFG=$\frac{x-1}{{x}^{2}}$S¡÷CBD £¬
¡àS¡÷AEH+S¡÷CFG=$\frac{x-1}{{x}^{2}}$£¨S¡÷ABD+S¡÷CBD£©=$\frac{x-1}{{x}^{2}}$SËıßÐÎABCD £¬
ͬÀí¿ÉµÃ£¬S¡÷DHG+S¡÷BEF=$\frac{x-1}{{x}^{2}}$SËıßÐÎABCD £¬
¡àSËıßÐÎEFGH=£¨1-$\frac{x-1}{{x}^{2}}$¡Á2£©SËıßÐÎABCD=$\frac{{x}^{2}-2x+2}{{x}^{2}}$¡Á1=$\frac{{x}^{2}-2x+2}{{x}^{2}}$£¬
ÓÉ£¨1£©¿ÉÖª£¬SËıßÐÎE¡äF¡äG¡äH¡ä=4SËıßÐÎEFGH=4¡Á$\frac{{x}^{2}-2x+2}{{x}^{2}}$=$\frac{4{x}^{2}-8x+8}{{x}^{2}}$£¬
¹Ê´ð°¸Îª£º$\frac{4{x}^{2}-8x+8}{{x}^{2}}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÖеãËıßÐÎÒÔ¼°Î»ËÆÍ¼ÐεÄÐÔÖʵÄÔËÓ㬽â¾öÎÊÌâµÄ¹Ø¼üÊǽ«Í¼ÐνøÐзָÀûÓõȵ׵ȸߵÄÈý½ÇÐεÄÃæ»ý±È¾ÍµÈÓÚ¶ÔÓ¦µ×µÄ±È½øÐмÆË㣮½âÌâʱעÒ⣺ÏàËÆ¶à±ßÐεÄÃæ»ýÖ®±ÈµÈÓÚÏàËÆ±ÈµÄƽ·½£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø