题目内容
5.感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.
应用:如图③,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=$\sqrt{2}$,则AB-AC=2
分析 探究:欲证明DB=DC,只要证明△DFC≌△DEB即可.
应用:先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合BD=$\sqrt{2}$EB即可解决问题
解答 探究:
证明:如图②中,DE⊥AB于E,DF⊥AC于F,
∵DA平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,
∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△DEB中,
$\left\{\begin{array}{l}{∠F=∠DEB}\\{∠FCD=∠B}\\{DF=DE}\end{array}\right.$
∴△DFC≌△DEB,
∴DC=DB.
应用:解;如图③连接AD、DE⊥AB于E,DF⊥AC于F,
∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△DEB中,$\left\{\begin{array}{l}{∠F=∠DEB}\\{∠FCD=∠B}\\{DC=DB}\end{array}\right.$
∴△DFC≌△DEB,
∴DF=DE,CF=BE,
在Rt△ADF和Rt△ADE中,$\left\{\begin{array}{l}{AD=AD}\\{DE=DF}\end{array}\right.$
∴△ADF≌△ADE,
∴AF=AE,
∴AB-AC=(AE+BE)-(AF-CF)=2BE,
在Rt△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=$\sqrt{2}$,
∴BE=$\frac{\sqrt{2}}{2}$BD=1,
∴AB-AC=2BE=2.
故答案为2.
点评 此题是三角形综合题,主要考查全等三角形的判定和性质、角平分线的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.
| $\frac{1}{4}$+$\frac{1}{4}$= | $\frac{1}{3}$-$\frac{1}{2}$= | 8-$\frac{3}{7}$-$\frac{4}{7}$= |
| 3$\frac{1}{4}$+1.75= | $\frac{3}{5}$÷(-$\frac{1}{3}$)= | -12-|1|= |