题目内容

9.某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).
绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:
(1)E类学生有5人,补全条形统计图;
(2)D类学生人数占被调查总人数的36%;
(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.

分析 (1)根据总人数等于各类别人数之和可得E类别学生数;
(2)用D类别学生数除以总人数即可得;
(3)列举所有等可能结果,根据概率公式求解可得.

解答 解:(1)E类学生有50-(2+3+22+18)=5(人),
补全图形如下:

故答案为:5;

(2)D类学生人数占被调查总人数的$\frac{18}{50}$×100%=36%,
故答案为:36;

(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,
从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,
其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,
∴这2人做义工时间都在2<t≤4中的概率为$\frac{3}{10}$.

点评 本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网