题目内容
1.分析 首先过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,由BD平分∠ABC,根据角平分线的性质,即可得DE=DF,又由AD=CD,即可判定Rt△CDE≌Rt△ADF,则可证得∠A+∠C=180°,即可得到结论.
解答
解:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,
∵BD平分∠ABC,
∴DE=DF,∠DEC=∠F=90°,
在RtCDE和Rt△ADF中,
$\left\{\begin{array}{l}{CD=AD}\\{DE=DF}\end{array}\right.$,
∴Rt△CDE≌Rt△ADF(HL),
∴∠FAD=∠C,
∴∠BAD+∠C=∠BAD+∠FAD=180°,
∵∠C=50°,
∴∠BAD=130°.
点评 此题考查了角平分线的性质与全等三角形的判定与性质.此题难度适中,解题的关键是准确作出辅助线,掌握数形结合思想的应用.
练习册系列答案
相关题目
13.若规定收入为“+”,那么支出40元表示( )
| A. | +40元 | B. | -40元 | C. | 0 | D. | +80元 |