题目内容

如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:
①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.
其中正确的结论有(  )
A、1个B、2个C、3个D、4个
考点:角平分线的性质,全等三角形的判定与性质
专题:
分析:根据角平分线上的点到角的两边距离相等可得DE=DF,再利用“HL”证明Rt△CDE和Rt△BDF全等,根据全等三角形对应边相等可得CE=AF,利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,然后求出CE=AB+AE;根据全等三角形对应角相等可得∠DBF=∠DCE,然后求出A、B、C、D四点共圆,根据同弧所对的圆周角相等可得∠BDC=∠BAC;∠DAE=∠CBD,再根据全等三角形对应角相等可得∠DAE=∠DAF,然后求出∠DAF=∠CBD.
解答:解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,
∴DE=DF,
在Rt△CDE和Rt△BDF中,
BD=CD
DE=DF

∴Rt△CDE≌Rt△BDF(HL),故①正确;
∴CE=AF,
在Rt△ADE和Rt△ADF中,
AD=AD
DE=DF

∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF,
∴CE=AB+AF=AB+AE,故②正确;
∵Rt△CDE≌Rt△BDF,
∴∠DBF=∠DCE,
∴A、B、C、D四点共圆,
∴∠BDC=∠BAC,故③正确;
∠DAE=∠CBD,
∵Rt△ADE≌Rt△ADF,
∴∠DAE=∠DAF,
∴∠DAF=∠CBD,故④正确;
综上所述,正确的结论有①②③④共4个.
故选D.
点评:本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网