题目内容

如图,已知点A是以MN为直径的半圆上一个三等分点,点B是的中点,点P是半径ON上的点.若⊙O的半径为l,则AP+BP的最小值为( )

A.2 B. C. D.

B

【解析】

试题分析:本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.1

【解析】
作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,

连接OA′,AA′,OB,

∵点A与A′关于MN对称,点A是半圆上的一个三等分点,

∴∠A′ON=∠AON=60°,PA=PA′,

∵点B是弧AN^的中点,

∴∠BON=30°,

∴∠A′OB=∠A′ON+∠BON=90°,

又∵OA=OA′=1,

∴A′B=

∴PA+PB=PA′+PB=A′B=

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网