题目内容

9.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为(  )
A.19cm2B.16cm2C.15cm2D.12cm2

分析 在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t≤4),则PC=(6-t)cm,CQ=2tcm,利用分割图形求面积法可得出S四边形PABQ=t2-6t+24,利用配方法即可求出四边形PABQ的面积最小值,此题得解.

解答 解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,
∴AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=6cm.
设运动时间为t(0≤t≤4),则PC=(6-t)cm,CQ=2tcm,
∴S四边形PABQ=S△ABC-S△CPQ=$\frac{1}{2}$AC•BC-$\frac{1}{2}$PC•CQ=$\frac{1}{2}$×6×8-$\frac{1}{2}$(6-t)×2t=t2-6t+24=(t-3)2+15,
∴当t=3时,四边形PABQ的面积取最小值,最小值为15.
故选C.

点评 本题考查了二次函数的最值以及勾股定理,利用分割图形求面积法找出S四边形PABQ=t2-6t+24是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网