题目内容
2.计算:(1)若 $\left\{\begin{array}{l}x-y=6\\ xy=-8\end{array}\right.$,求:
①(x+y)2的值;
②(x+2)(y-2)的值;
(2)若x2-x-4=0,计算x3+x2-6x的值.
分析 (1)①将(x+y)2化为(x-y)2+4xy可得结果;
②将(x+2)(y-2)化为xy-2(x-y)-4可得结果;
(2)先根据已知将x3+x2-6x降次可得结果.
解答 解:(1)①(x+y)2
=(x-y)2+4xy
=36-4×(-8)
=36+32
=68;
②(x+2)(y-2)
=xy-2(x-y)-4
=-8-2×6-4
=-24;
(2)∵x2-x-4=0,
∴x2=x+4,x2-x=4,
∴x3+x2-6x
=x(x+4)+x2-6x
=x2+4x+x2-6x
=2x2-2x
=2(x2-x)
=2×4
=8.
点评 本题主要考查了因式分解,多项式乘多项式等,将所求式子进行适当的变形是解答此题的关键.
练习册系列答案
相关题目
2.如果∠A和∠B的两边分别平行,∠A=60°,那么∠B是( )
| A. | 60° | B. | 30°或120° | C. | 120° | D. | 60°或120° |