题目内容

9.将一副直角三角板如图摆放,点C在EF上,AC经过点D,∠A=∠EDF=90°,∠BCE=40°,则∠CDF=25°.

分析 由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE-∠F=∠BCE+∠ACB-∠F,继而求得答案.

解答 解:∵AB=AC,∠A=90°,
∴∠ACB=∠B=45°,
∵∠EDF=90°,∠E=30°,
∴∠F=90°-∠E=60°,
∵∠ACE=∠CDF+∠F,∠BCE=40°,
∴∠CDF=∠ACE-∠F=∠BCE+∠ACB-∠F=45°+40°-60°=25°.
故答案为:25°.

点评 本题考查了三角形的内角和,三角形外角的性质,直角三角形的性质.此题难度不大,熟练掌握各性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网