题目内容

计算:

(1)

(2)

(3)

(1)85;(2);(3) 84°18′54″ 【解析】试题分析:(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果; (2)原式去括号合并即可得到结果; (3)先算乘法,再求差即可. 试题解析:(1) = = =75+10 =85; (2) = = =; (3) = =84°18′54″....
练习册系列答案
相关题目

某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.

(1)分别求yA、yB关于x的函数关系式;

(2)当A组材料的温度降至120℃时,B组材料的温度是多少?

(3)在0<x<40的什么时刻,两组材料温差最大?

【答案】(1)yA=﹣20x+1000;

(2)B组材料的温度是164℃;

(3)当x=20时,两组材料温差最大为100℃.

【解析】试题分析:(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA-yB的函数关系式,进而求出最值即可.

试题解析:(1)由题意可得出:yB=(x﹣60)2+m经过(0,1000),

则1000=(0﹣60)2+m,

解得:m=100,

∴yB=(x﹣60)2+100,

当x=40时,yB=×(40﹣60)2+100,

解得:yB=200,

yA=kx+b,经过(0,1000),(40,200),

解得:

∴yA=﹣20x+1000;

(2)当A组材料的温度降至120℃时,

120=﹣20x+1000,

解得:x=44,

当x=44,yB=(44﹣60)2+100=164(℃),

∴B组材料的温度是164℃;

(3)当0<x<40时,yA﹣yB=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x﹣20)2+100,

∴当x=20时,两组材料温差最大为100℃.

【题型】解答题
【结束】
26

正方形ABCD的边长为6cm,点E,M分别是线段BD,AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.

(1)如图①,若点M与点D重合,求证:AF=MN;

(2)如图②,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为ts.

①设BF=ycm,求y关于t的函数表达式;

②当BN=2AN时,连接FN,求FN的长.

见解析 【解析】试题分析:(1)根据四边形的性质得到AD=AB,∠BAD=90°,由垂直的定义得到∠AHM=90°,由余角的性质得到∠BAF=∠AMH,根据全等三角形的性质即可得到结论; (2)①根据勾股定理得到BD=6,由题意得,DM=t,BE=t,求得AM=6-t,DE=6-t,根据相似三角形的判定和性质即可得到结论; ②根据已知条件得到AN=2,BN=4,根据相似三角形的性...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网