ÌâÄ¿ÄÚÈÝ
17£®£¨1£©µ±tΪ¶àÉÙʱ£¬ËıßÐÎABQP³ÉΪ¾ØÐΣ¿
£¨2£©ËıßÐÎPBQDÊÇ·ñÄܳÉΪÁâÐΣ¿ÈôÄÜ£¬Çó³ötµÄÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£¬²¢Ì½¾¿ÈçºÎ¸Ä±äQµãµÄËÙ¶È£¨ÔÈËÙÔ˶¯£©£¬Ê¹ËıßÐÎPBQDÔÚijһʱ¿ÌΪÁâÐΣ¬ÇóµãQµÄËÙ¶È£®
·ÖÎö £¨1£©ÒòΪ¡ÏB=90¡ã£¬AP¡ÎBQ£¬ÓɾØÐεÄÅж¨¿ÉÖªµ±AP=BQʱ£¬ËıßÐÎABQP³ÉΪ¾ØÐΣ»
£¨2£©ÒòΪPD¡ÎBQ£¬µ±PD=BQ=BPʱ£¬ËıßÐÎPBQDÄܳÉΪÁâÐΣ¬ÏÈÓÉPD=BQÇó³öÔ˶¯Ê±¼ätµÄÖµ£¬ÔÙ´úÈëÇóBP£¬·¢ÏÖBP¡ÙPD£¬ÅжϴËʱËıßÐÎPBQD²»ÄܳÉΪÁâÐΣ»ÉèQµãµÄËٶȸıäΪvcm/sʱ£¬ËıßÐÎPBQDÔÚʱ¿ÌtΪÁâÐΣ¬¸ù¾ÝPD=BQ=BPÁгö¹ØÓÚv¡¢tµÄ·½³Ì×飬½â·½³Ì×é¼´¿ÉÇó³öµãQµÄËÙ¶È£®
½â´ð ½â£º£¨1£©¡ß¡ÏB=90¡ã£¬AP¡ÎBQ£¬
¡àµ±AP=BQʱ£¬ËıßÐÎABQP³ÉΪ¾ØÐΣ¬![]()
´ËʱÓÐt=22-3t£¬½âµÃt=$\frac{11}{2}$£®
¡àµ±t=$\frac{11}{2}$sʱ£¬ËıßÐÎABQP³ÉΪ¾ØÐΣ»
£¨2£©
ËıßÐÎPBQD²»ÄܳÉΪÁâÐΣ®ÀíÓÉÈçÏ£º
¡ßPD¡ÎBQ£¬
¡àµ±PD=BQ=BPʱ£¬ËıßÐÎPBQDÄܳÉΪÁâÐΣ®
ÓÉPD=BQ£¬µÃ16-t=22-3t£¬½âµÃt=3£¬
µ±t=3ʱ£¬PD=BQ=13£¬BP=$\sqrt{A{B}^{2}+A{P}^{2}}$=$\sqrt{{8}^{2}+{t}^{2}}$=$\sqrt{{8}^{2}+{3}^{2}}$=$\sqrt{73}$¡Ù13£¬
¡àËıßÐÎPBQD²»ÄܳÉΪÁâÐΣ»
Èç¹ûQµãµÄËٶȸıäΪvcm/sʱ£¬Äܹ»Ê¹ËıßÐÎPBQDÔÚʱ¿ÌtsΪÁâÐΣ¬
ÓÉÌâÒ⣬µÃ$\left\{\begin{array}{l}{16-t=22-vt}\\{16-t=\sqrt{{8}^{2}+{t}^{2}}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{t=6}\\{v=2}\end{array}\right.$£®
¹ÊµãQµÄËÙ¶ÈΪ2cm/sʱ£¬Äܹ»Ê¹ËıßÐÎPBQDÔÚijһʱ¿ÌΪÁâÐΣ®
µãÆÀ ±¾Ìâ½èÖú¶¯µãÖ÷Òª¿¼²éÁ˾ØÐΡ¢ÁâÐεÄÅж¨£¬¹´¹É¶¨Àí£¬µÈÑüÌÝÐεÄÅж¨ÓëÐÔÖÊ£¬ÒÔ¼°·½³ÌºÍ·½³Ì×éÔÚ¼¸ºÎͼÐÎÖеÄÓ¦Óã¬ÄѶÈÊÊÖУ¬Óú¬tµÄ´úÊýʽÕýÈ·±íʾ³öÏà¹ØÏ߶εij¤¶ÈÊǽâÌâµÄ¹Ø¼ü£®
| A£® | 130¡ã | B£® | 50¡ã | C£® | 100¡ã | D£® | ²»ÄÜÈ·¶¨ |
| È˾ùס·¿Ãæ»ý£¨Æ½·½Ã×£© | µ¥¼Û£¨ÍòÔª/ƽ·½Ã×£© |
| ²»³¬¹ý30ƽ·½Ã× | 0.6 |
| ³¬¹ý30ƽ·½Ãײ»³¬¹ýmƽ·½Ã׵IJ¿·Ö£¨45¡Üm¡Ü60£© | 0.8 |
| ³¬¹ýmƽ·½Ãײ¿·Ö | 1 |
£¨1£©ÈôijÈý¿ÚÖ®¼ÒÓû¹ºÂò120ƽ·½Ã×µÄÉÌÆ··¿£¬ÇóÆäÓ¦½ÉÄɵķ¿¿î£»
£¨2£©Éè¸Ã¼ÒÍ¥¹ºÂòÉÌÆ··¿µÄÈ˾ùÃæ»ýΪxƽ·½Ã×£¬½ÉÄÉ·¿¿îyÍòÔª£¬ÇëÇó³öy¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£¨mΪ³£Êý£©£»
£¨3£©Èô¸Ã¼ÒÍ¥¹ºÂòÉÌÆ··¿µÄÈ˾ùÃæ»ýΪ50ƽ·½Ã×£¬½ÉÄÉ·¿¿îΪyÍòÔªÇÒ102£¼y¡Ü105ʱ£¬ÇómµÄȡֵ·¶Î§£®