题目内容
多项式(x+y-z)(x-y+z)-(y+z-x)(z-x-y)的公因式是( )
| A、x+y-z | B、x-y+z |
| C、y+z-x | D、不存在 |
考点:公因式
专题:
分析:根据原式,将(z-x-y)提取负号,进而得出公因式即可.
解答:解:(x+y-z)(x-y+z)-(y+z-x)(z-x-y)
=(x+y-z)(x-y+z)+(y+z-x)(x+y-z)
=(x+y-z)(x-y+z+y+z-x)
=2z(x+y-z),
故多项式(x+y-z)(x-y+z)-(y+z-x)(z-x-y)的公因式是:x+y-z.
故选:A.
=(x+y-z)(x-y+z)+(y+z-x)(x+y-z)
=(x+y-z)(x-y+z+y+z-x)
=2z(x+y-z),
故多项式(x+y-z)(x-y+z)-(y+z-x)(z-x-y)的公因式是:x+y-z.
故选:A.
点评:此题主要考查了公因式的定义,正确找出公因式是解题关键.
练习册系列答案
相关题目