题目内容

13.先化简,再选择一个你喜欢的数字代入求值:($\frac{x+2}{{x}^{2}-2x}$-$\frac{x-1}{{x}^{2}-4x+4}$)÷$\frac{x-4}{x}$.

分析 首先括号内的分式的分母分解因式,把除法转化为乘法,然后括号内的分式通分相减,再计算乘法即可化简,最后代入适当的x的值计算即可.

解答 解:原式=[$\frac{x+2}{x(x-2)}$-$\frac{x-1}{(x-2)^{2}}$]•$\frac{x}{x-4}$
=$\frac{(x+2)(x-2)-x(x-1)}{x(x-2)^{2}}$•$\frac{x}{x-4}$
=$\frac{{x}^{2}-4-{x}^{2}+x}{x(x-2)^{2}}$•$\frac{x}{x-4}$
=$\frac{x-4}{x(x-2)^{2}}$•$\frac{x}{x-4}$
=$\frac{1}{(x-2)^{2}}$.
当x=3时,原式=1.

点评 本题考查了分式的化简求值以及二次根式的化简,正确把分式的分子和分母分解因式是本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网