题目内容
13.分析 由题意可知,要求的石方数其实就是横截面为ABCD的立方体的体积.那么求出四边形ABCD的面积即可.
解答 解:∵Rt△BFD中,∠DBF的坡度为1:2,
∴BF=2DF=8,
∴S△BDF=BF×FD÷2=16.
∵Rt△ACE中,∠A的坡度为1:2.5,
∴CE:AE=1:2.5,CE=DF=4,AE=10.
S梯形AFDC=(AE+EF+CD)×DF÷2=28.
∴S四边形ABCD=S梯形AFDC-S△BFD=12.
那么所需的石方数应该是12×12000=144000(立方米),
故答案为:144000.
点评 本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.
练习册系列答案
相关题目
1.
某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:
(1)当t为何值时,乒乓球达到最大高度?
(2)乒乓球落在桌面时,与端点A的水平距离是多少?
(3)乒乓球落在桌面上弹起后,y与x满足y=a(x-3)2+k.
①用含a的代数式表示k;
②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.
| t(秒) | 0 | 0.16 | 0.2 | 0.4 | 0.6 | 0.64 | 0.8 | … |
| x(米) | 0 | 0.4 | 0.5 | 1 | 1.5 | 1.6 | 2 | … |
| y(米) | 0.25 | 0.378 | 0.4 | 0.45 | 0.4 | 0.378 | 0.25 | … |
(2)乒乓球落在桌面时,与端点A的水平距离是多少?
(3)乒乓球落在桌面上弹起后,y与x满足y=a(x-3)2+k.
①用含a的代数式表示k;
②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.