ÌâÄ¿ÄÚÈÝ
16£®£¨1£©ÇóÖ¤£º$\frac{EC}{EA}$=$\frac{ED}{EB}$£»
£¨2£©Èô$\frac{AM}{BM}$=$\frac{1}{2}$£¬Çó$\frac{k}{x}$£¾2x-2µÄxµÄȡֵ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬PΪ˫ÇúÏßÉÏÒ»µã£¬ÒÔOB£¬OPΪÁÚ±ß×÷ƽÐÐËıßÐΣ¬ÇÒÆ½ÐÐËıßÐεÄÖܳ¤×îС£¬ÇóµÚËĸö¶¥µãQµÄ×ø±ê£®
·ÖÎö £¨1£©ÉèA£¨x1£¬$\frac{k}{{x}_{1}}$£©£¬B£¨x2£¬$\frac{k}{{x}_{2}}$£©£¬ÔòÓÐAE=x1-x2£¬BE=$\frac{k}{{x}_{1}}$-$\frac{k}{{x}_{2}}$£¬EC=-x2£¬ED=$\frac{k}{{x}_{1}}$£¬Ê×ÏÈÖ¤Ã÷$\frac{AE}{BE}$=$\frac{EC}{ED}$£¬Óɴ˼´¿É½â¾öÎÊÌ⣮
£¨2£©£©ÓÉDM¡ÎAE£¬µÃ$\frac{DE}{BD}$=$\frac{AM}{BM}$=$\frac{1}{2}$£¬ÉèA£¨m£¬n£©ÔòB£¨-$\frac{m}{2}$£¬-2n£©£¬°ÑA¡¢B´úÈëy=2x-2µÃµ½$\left\{\begin{array}{l}{n=2m-2}\\{-2n=4m-2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=2}\\{n=2}\end{array}\right.$£¬Çó³öA¡¢BÁ½µã×ø±ê¼´¿É½â¾öÎÊÌ⣮
£¨3£©ÒòΪµãBÊǶ¨µã£¬OBÊǶ¨³¤£¬ËùÒÔÒªÇóƽÐÐËıßÐÎOBPQµÄÖܳ¤µÄ×îСֵֻÐèÒªÇó³öOPµÄ×îСֵ¼´¿É£¬ÓÉPÔÚy=$\frac{4}{x}$ÉÏ£¬ÉèP£¨a£¬$\frac{4}{a}$£©£¬ÒòΪOP2=n2+$\frac{16}{{n}^{2}}$=£¨n-$\frac{4}{n}$£©2+8£¬ËùÒÔµ±n-$\frac{4}{n}$=0ʱ£¬OP2µÄÖµ×îС£¬Óɴ˼´¿É½â¾öÎÊÌ⣮
½â´ð £¨1£©Ö¤Ã÷£ºÉèA£¨x1£¬$\frac{k}{{x}_{1}}$£©£¬B£¨x2£¬$\frac{k}{{x}_{2}}$£©£¬ÔòÓÐAE=x1-x2£¬BE=$\frac{k}{{x}_{1}}$-$\frac{k}{{x}_{2}}$£¬EC=-x2£¬ED=$\frac{k}{{x}_{1}}$£¬
¡ß$\frac{AE}{BE}$=$\frac{{x}_{1}-{x}_{2}}{\frac{k}{{x}_{1}}-\frac{k}{{x}_{2}}}$=-$\frac{{x}_{1}{x}_{2}}{k}$£¬$\frac{EC}{ED}$=$\frac{-{x}_{2}}{\frac{k}{{x}_{1}}}$=-$\frac{{x}_{1}{x}_{2}}{k}$£¬
¡à$\frac{AE}{BE}$=$\frac{EC}{ED}$£¬![]()
¡à$\frac{EC}{EA}$=$\frac{ED}{EB}$£®
£¨2£©¡ßDM¡ÎAE£¬
¡à$\frac{DE}{BD}$=$\frac{AM}{BM}$=$\frac{1}{2}$£¬
¡àA£¨m£¬n£©ÔòB£¨-$\frac{m}{2}$£¬-2n£©£¬
°ÑA¡¢B´úÈëy=2x-2µÃµ½$\left\{\begin{array}{l}{n=2m-2}\\{-2n=4m-2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{m=2}\\{n=2}\end{array}\right.$£¬
¡àA£¨2£¬2£©£¬B£¨-1£¬-4£©£¬
ÓÉͼÏó¿ÉÖª£¬$\frac{k}{x}$£¾2x-2ʱ£¬x£¼-1»ò0£¼x£¼2£®
£¨3£©ÓÉ£¨2£©¿ÉÖª·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{4}{x}$£¬A£¨2£¬2£©£¬B£¨1£¬-4£©£¬
¡ßËıßÐÎOBPQÊÇÆ½ÐÐËıßÐΣ¬
¡àOB=PQ£¬PO=BQ£¬
¡ßµãBÊǶ¨µã£¬¡àOBÊǶ¨³¤£¬
¡àÒªÇóƽÐÐËıßÐÎOBPQµÄÖܳ¤µÄ×îСֵֻÐèÒªÇó³öOPµÄ×îСֵ¼´¿É£¬
¡ßPÔÚy=$\frac{4}{x}$ÉÏ£¬ÉèP£¨a£¬$\frac{4}{a}$£©£¬
¡àOP2=n2+$\frac{16}{{n}^{2}}$=£¨n-$\frac{4}{n}$£©2+8£¬
¡àµ±n-$\frac{4}{n}$=0ʱ£¬OP2µÄÖµ×îС£¬
¡àn=¡À2ʱ£¬OPÓÐ×îСֵ£¬
¡àP£¨2£¬2£©»ò£¨-2£¬-2£©£¬Q£¨1£¬-2£©»ò£¨-3£¬-6£©£®
µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯Êý×ÛºÏÌâ¡¢×ø±êÓëͼÏóµÄÐÔÖÊ£®ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£¬Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖÊ£¬´ý¶¨ÏµÊý·¨ÒÔ¼°Èý½ÇÐÎÃæ»ýµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮