ÌâÄ¿ÄÚÈÝ
9£®Èçͼ£¬¾ØÐÎABODµÄÁ½±ßOB£¬OD¶¼ÔÚ×ø±êÖáµÄÕý°ëÖáÉÏ£¬OD=3£¬ÁíÁ½±ßÓë·´±ÈÀýº¯ÊýµÄͼÏó·Ö±ðÏཻÓÚµãE£¬F£¬ÇÒDE=2£¬¹ýµãE×÷EH¡ÍxÖáÓÚµãH£¬¹ýµãF×÷FG¡ÍEHÓÚµãG£®½â´ðÏÂÁÐÎÊÌ⣺£¨1£©¸Ã·´±ÈÀýº¯ÊýµÄ½âÎöʽÊÇʲô£¿
£¨2£©µ±ËıßÐÎAEGFΪÕý·½ÐÎʱ£¬µãFµÄ×ø±êÊǶàÉÙ£¿
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬×ø±êÆ½ÃæÄÚÊÇ·ñ´æÔÚµãC£¬Ê¹µÃµãC£¬D£¬H£¬F¹¹³ÉƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãCµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨4£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬½øÒ»²½Ì½¾¿£ºµãPÊÇÏß¶ÎADÉÏÈÎÒâÒ»µã£¬Á¬½ÓHP£¬ÔÚµÚÒ»ÏóÏÞÄÚ×÷PQ¡ÍHP£¬ÇÒPQ=HP£¬µ±µãP´ÓµãDÔ˶¯µãAµÄ¹ý³ÌÖУ¬ÇëÖ±½Óд³öµãQ¾¹ýµÄ·¾¶³¤£®
·ÖÎö £¨1£©Éè·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{k}{x}$£¬°ÑµãE×ø±ê´úÈë¼´¿É½â¾öÎÊÌ⣮
£¨2£©ÉèÕý·½Ðα߳¤Îªa£¬ÔòµãF×ø±ê£¨2+a£¬3-a£©£¬´úÈë·´±ÈÀýº¯Êý½âÎöʽ£¬¼´¿É½â¾öÎÊÌ⣮
£¨3£©´æÔÚ£®Âú×ãÌõ¼þµÄµãCÓÐÈý¸ö£®
£¨4£©µãQÔ˶¯µÄ¹ì¼£ÊÇÏß¶ÎQ¡äQ¡å£¬ÔÚRt¡÷Q¡äFQ¡åÖУ¬¸ù¾ÝQ¡äQ¡å=$\sqrt{2}$FQ¡ä£¬¼´¿É½â¾öÎÊÌ⣮
½â´ð ½â£º£¨1£©Éè·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{k}{x}$£¬
ÓÉÌâÒâµãE×ø±ê£¨2£¬3£©£¬´úÈëy=$\frac{k}{x}$£¬µÃµ½k=6£¬
¡à·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{6}{x}$£®
£¨2£©ÉèÕý·½Ðα߳¤Îªa£¬ÔòµãF×ø±ê£¨2+a£¬3-a£©£¬
°ÑF£¨2+a£¬3-a£©´úÈëy=$\frac{6}{x}$µÃ£¨2+a£©£¨3-a£©=6£¬
½âµÃa=1»ò0£¨ÉáÆú£©£¬
¡àµãF×ø±ê£¨3£¬2£©£®
£¨3£©´æÔÚ£®ÈçÏÂͼÖУ¬µ±µãC×ø±ê£¨1£¬5£©»ò£¨-1£¬1£©»ò£¨5£¬-1£©Ê±£¬µãC£¬D£¬H£¬F¹¹³ÉƽÐÐËıßÐΣ®![]()
£¨4£©Èçͼ£¬![]()
¢Ùµ±µãPÓëDÖØºÏʱ£¬ÓÉ¡÷DHO¡Õ¡÷DQ¡äA£¬¿ÉÖª¡ÏDAQ¡ä=¡ÏDOH=90¡ã£¬
´ËʱB¡¢A¡¢Q¡ä¹²Ïߣ¬AQ¡ä=OH=2£¬
¢Úµ±µãPÔÚÏß¶ÎADÉÏʱ£¬×÷QM¡ÍDAÓÚM£¬×÷QN¡ÍBAÓÚN£®ÓÉ¡÷PHE¡Õ¡÷QPM¿ÉÖªPM=HE=AD£¬QM=PE£¬
¡àPD=AM=NQ£¬
¡ßAQ¡ä=OH=DE£¬AN=MQ=PE£¬
¡àNQ¡ä=DP=AM=NQ£¬
¡à¡÷NQQ¡äÊǵÈÑüÈý½ÇÐΣ¬
¡à¡ÏQQ¡äB=45¡ã£¬
¢Ûµ±µãPÓëAÖØºÏʱ£¬ÓÉ¡÷AHE¡Õ¡÷AQ¡åF¿ÉÖª¡ÏAEH=¡ÏQ¡åFA=90¡ã£¬
×ÛÉÏËùÊö£¬µãQÔ˶¯µÄ¹ì¼£ÊÇÏß¶ÎQ¡äQ¡å£¬
ÔÚRt¡÷Q¡äFQ¡åÖУ¬Q¡äQ¡å=$\sqrt{2}$FQ¡ä=3$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯Êý×ÛºÏÌ⡢ƽÐÐËıßÐεÄÅж¨ºÍÐÔÖÊ¡¢È«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢¹ì¼£µÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÓ¦Óôý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬Ñ§»áÀûÓÃÆðʼµã»òÖÕµãѰÕҹ켣£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮