题目内容

如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_____________,使△AEH≌△CEB.

AH=BC或EA=EC或EH=EB等; 【解析】∵AD⊥BC,CE⊥AB,垂足分别为D、E, ∴∠BEC=∠AEC=90°, 在Rt△AEH中,∠EAH=90°﹣∠AHE, 又∵∠EAH=∠BAD, ∴∠BAD=90°﹣∠AHE, 在Rt△AEH和Rt△CDH中,∠CHD=∠AHE, ∴∠EAH=∠DCH, ∴∠EAH=90°﹣∠CHD=∠BCE, ...
练习册系列答案
相关题目

解方程:

x=-2 【解析】试题分析:按照解分式方程的步骤解方程即可. 试题解析:去分母,得 去括号,得 移项,得 合并同类项,得 检验:当时, 是原方程的解.

-9a2b+3ac2-6abc各项的公因式是_______;

-3a 【解析】根据提公因式法因式分解,可知其是首项为“﹣”的多项式,因此可知其公因式为-3a. 故答案为:-3a.

一个三角形最初的一个顶点为A,把它先向下平移4个单位长度时的位置记为B,再向左平移3个单位长度时的位置记为C,则由A,B,C三点所组成的三角形的周长为 ( )

A. 7 B. 14 C. 12 D. 15

C 【解析】试题分析:如图所示: AB=4,BC=3, 则AC=5, 故由A,B,C三点所组成的三角形的周长为:3+4+5=12. 故选C.

如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.

证明见解析. 【解析】由于△ABF与△DCE是直角三角形,根据直角三角形全等的判定的方法即可证明. 证明:∵BE=CF, ∴BE+EF=CF+EF,即BF=CE, ∵∠A=∠D=90°, ∴△ABF与△DCE都为直角三角形, 在Rt△ABF和Rt△DCE中, BC=CE,AB=CD, ∴Rt△ABF≌Rt△DCE(HL).

如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

B 【解析】【解析】 ①∵BE⊥AC,AD⊥BC,∴∠AEH=∠ADB=90°. ∵∠HBD+∠BHD=90°,∠EAH+∠AHE=90°,∠BHD=∠AHE,∴∠HBD=∠EAH. ∵DH=DC,∴△BDH≌△ADC(AAS),∴BD=AD,BH=AC; ②∵BC=AC,∴∠BAC=∠ABC. 由①知,在Rt△ABD中,∵BD=AD,∴∠ABC=45°,∴∠BAC...

如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是( )

A. 30° B. 60° C. 90° D. 120°

C 【解析】试题分析:由题意得,剩下的三角形是直角三角形, 所以,∠1+∠2=90°. 故选C.

图形左边的图形是由右边的图形怎样平移得到的?

向左平移6个单位. 【解析】试题分析:观察图形中对应点的变化,即可得出图形的变化规律. 试题解析: 根据题意可以得到左边的图形是由右边的图形向左平移6个单位长度平移得到的.

关于x的不等式(a-1)x>a-1的解集为x<1,则下列判断正确的是(  )

A. a<0 B. a>1 C. a<1 D. a为任意数

C 【解析】由含有a的不等式(a-1)x>a-1的解集为:x<1,根据不等式的基本性质3,可知a-1<0,解得a<1. 故选:C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网