题目内容

11.解下列方程组
(1)$\left\{\begin{array}{l}2x-y=-4\\ 4x-5y=-23.\end{array}\right.$ 
(2)$\left\{\begin{array}{l}\frac{y+1}{4}=\frac{x+2}{3}\\ 2x-3y=1\end{array}\right.$
(3)$\left\{\begin{array}{l}{a+b=3}\\{b+c=-2}\\{c+a=7}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可;
(3)将方程组三个方程相加求出a+b+c的值,进而将每一个方程代入即可求出a,b,c的值.

解答 解:(1)$\left\{\begin{array}{l}{2x-y=-4①}\\{4x-5y=-23②}\end{array}\right.$,
①×5-②得:6x=3,即x=0.5,
将x=0.5代入①得:y=5,
则方程组的解为$\left\{\begin{array}{l}{x=0.5}\\{y=5}\end{array}\right.$;

(2)方程组整理得:$\left\{\begin{array}{l}{4x-3y=-5①}\\{2x-3y=1②}\end{array}\right.$,
①-②得:2x=-6,即x=-3,
将x=-3代入②得:y=-$\frac{7}{3}$,
则方程组的解为$\left\{\begin{array}{l}{x=-3}\\{y=-\frac{7}{3}}\end{array}\right.$;

(3)$\left\{\begin{array}{l}{a+b=3①}\\{b+c=-2②}\\{c+a=7③}\end{array}\right.$,
①+②+③得:2(a+b+c)=8,即a+b+c=4④,
将①代入④得:c=1,
将②代入④得:a=6,
将③代入④得:b=-3,
则方程组的解为$\left\{\begin{array}{l}{a=6}\\{b=-3}\\{c=1}\end{array}\right.$.

点评 此题考查了解二元一次方程组与解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网