题目内容

17.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为2,若A(4,0),B(2,2),则点D的坐标为(  )
A.(1,2)B.(1,1)C.($\sqrt{2}$,$\sqrt{2}$)D.(2,1)

分析 利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(-kx,ky),进而求出即可.

解答 解:∵△OAB与△OCD是以点O为位似中心的位似图形,相似比为2,B(2,2),
∴点D的坐标为:(1,1).
故选:B.

点评 此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网