题目内容

14.已知平行四边形ABCD的对角钱AC与BD相交于点O,AB⊥AC,若AB=2,AC=8,则对角线BD的长是(  )
A.2$\sqrt{2}$B.2$\sqrt{5}$C.4$\sqrt{2}$D.4$\sqrt{5}$

分析 由平行四边形的性质得出OA=OC=$\frac{1}{2}$AC=4,OB=OD=$\frac{1}{2}$BD,由勾股定理求出OB,即可得出BD的长.

解答 解:∵四边形ABCD是平行四边形,
∴OA=OC=$\frac{1}{2}$AC=4,OB=OD=$\frac{1}{2}$BD,
∵AB⊥AC,
∴∠BAO=90°,
∴OB=$\sqrt{A{B}^{2}+O{A}^{2}}$=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,
∴BD=2OB=4$\sqrt{5}$;
故选:D.

点评 本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网