题目内容
14.已知平行四边形ABCD的对角钱AC与BD相交于点O,AB⊥AC,若AB=2,AC=8,则对角线BD的长是( )| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | 4$\sqrt{2}$ | D. | 4$\sqrt{5}$ |
分析 由平行四边形的性质得出OA=OC=$\frac{1}{2}$AC=4,OB=OD=$\frac{1}{2}$BD,由勾股定理求出OB,即可得出BD的长.
解答 解:∵四边形ABCD是平行四边形,
∴OA=OC=$\frac{1}{2}$AC=4,OB=OD=$\frac{1}{2}$BD,
∵AB⊥AC,
∴∠BAO=90°,
∴OB=$\sqrt{A{B}^{2}+O{A}^{2}}$=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,
∴BD=2OB=4$\sqrt{5}$;
故选:D.
点评 本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
练习册系列答案
相关题目
9.
将矩形ABCD绕点B顺时针旋转90°后得到矩形A′BC′D′,若AB=12,AD=5,则△DBD′的面积为( )
| A. | 13 | B. | 26 | C. | 84.5 | D. | 169 |
6.
如图,将正方形纸片ABCD绕着点A按逆时针方向旋转30°后得到正方形AB′C′D′,若AB=2$\sqrt{3}$cm,则图中阴影部分的面积为( )
| A. | 6cm2 | B. | (12-6$\sqrt{3}$)cm2 | C. | 3$\sqrt{3}$cm2 | D. | 4$\sqrt{3}$cm2 |