题目内容

16.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为$\widehat{AD}$的中点,连接DE,EB.
(1)求证:四边形BCDE是平行四边形;
(2)已知图中阴影部分面积为6π,求⊙O的半径r.

分析 (1)由∠BOD=60°E为$\widehat{AD}$的中点,得到$\widehat{AE}=\widehat{DE}=\widehat{BD}$,于是得到DE∥BC,根据CD是⊙O的切线,得到OD⊥CD,于是得到BE∥CD,即可证得四边形BCDE是平行四边形;
(2)连接OE,由(1)知,$\widehat{AE}=\widehat{DE}=\widehat{BD}$,得到∠BOE=120°,根据扇形的面积公式列方程即可得到结论.

解答 解:(1)∵CD是⊙O的切线,∴∠CDO=90°,∵∠BOD=60°,
∴∠C=30°,∠AOD=120°,
∵E为$\widehat{AD}$的中点,
∴∠AOE=∠DOE=60°,
∴∠BOE=120°,
∵OE=OB,
∴∠OEB=∠OBE=30°,
∴∠C=∠OBE=∠E,
∴DE∥BC,BE∥CD,
∴四边形BCDE是平行四边形;

(2)连接OE,由(1)知,$\widehat{AE}=\widehat{DE}=\widehat{BD}$,
∴∠BOE=120°,
∵阴影部分面积为6π,
∴$\frac{60•π{•r}^{2}}{360°}$=6π,
∴r=6.

点评 本题考查了切线的性质,平行四边形的判定,扇形的面积公式,垂径定理,证明$\widehat{AE}=\widehat{DE}=\widehat{BD}$是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网