题目内容

如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1、A2、A3…An,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1、M2、M3、…Mn,…都在直线L:y=x上;②抛物线依次经过点A1、A2、A3…An、….则顶点M2014的坐标为______________.

(4027,4027) 【解析】试题解析:M1(a1,a 1)是抛物线y1=(x- a 1)2+a1的顶点, 抛物线y=x2与抛物线y1=(x- a 1)2+ a 1相交于A1, 得x2=(x- a 1)2+ a 1, 即2a1x= a 12+ a 1, x=(a1+1). ∵x为整数点 ∴a1=1, M1(1,1); M2(a2,a 2)是抛...
练习册系列答案
相关题目

下列能断定△ABC为等腰三角形的是( )

A.∠A=30°,∠B=60° B.∠A=50°,∠B=80°

C.AB=AC=2,BC=4 D.AB=3,BC=7,周长为10

B 【解析】 试题分析:A、B根据三角形的内角和求出第三个角,可得结果;C不能组成三角形,D利用周长求出第三边即可得到答案,根据等腰三角形的判定,采用逐条分析排除的方法判断. 【解析】 A、根据三角形内角和定理得,∠C=180°﹣60°﹣30°=90°,故不是等腰三角形; B、根据三角形内角和定理得,∠C=180°﹣50°﹣80°=50°,故是等腰三角形; C、根据...

二次函数的图象如图所示,则下列结论成立的是( )

A. a>0,bc>0,△<0 B. a<0,bc>0,△<0

C. a>0,bc<0,△<0 D. a<0,bc<0,△>0

D 【解析】【解析】 ∵抛物线开口向下,∴a<0,∵对称轴x=,∴b<0,抛物线与y轴的交点在x轴上方,∴c>0,∴bc<0,抛物线与x轴有两个交点,∴△>0.故选D.

如图,矩形ABCD的两边长AB=18cm,AD=4cm.点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,设运动时间为x秒,△PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;

(2)求△PBQ的面积的最大值.

(1)y=-x2+9x(0<x≤4);(2)△PBQ的面积的最大值是20cm2. 【解析】试题分析:(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解; (2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答. 试题解析:(1)∵S△PBQ=PB·BQ, PB=AB-AP=18-2x, BQ=x, ∴y= (18-2x)x,...

小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为s=v2,一辆小汽车速度为100km/h,在前方80m处停放一辆故障车,此时刹车_______(填“会”或“不会”)有危险.

会 【解析】试题分析:由题意把代入即可求得s的值,与80比较即可判断. 在中,当时, 则此时刹车会有危险.

已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )

A. abc<0 B. -3a+c<0

C. b2-4ac≥0 D. 将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c

B 【解析】解:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误; B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a﹣4a+c=﹣3a+c<0,故本选项正确; C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误; ...

如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了________米.

1000 【解析】试题分析:过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000

把多项式(a﹣2)+m(2﹣a)分解因式等于( ).

A.(a﹣2)(+m) B.(a﹣2)(﹣m)

C.m(a﹣2)(m﹣1) D.m(a﹣2)(m+1)

C. 【解析】 试题分析:先把(2﹣a)转化为(a﹣2),然后提取公因式m(a﹣2),可得(a﹣2)+m(2﹣a)= m(a﹣2)(m﹣1). 故选:C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网