题目内容

二次函数的图象如图所示,则下列结论成立的是( )

A. a>0,bc>0,△<0 B. a<0,bc>0,△<0

C. a>0,bc<0,△<0 D. a<0,bc<0,△>0

D 【解析】【解析】 ∵抛物线开口向下,∴a<0,∵对称轴x=,∴b<0,抛物线与y轴的交点在x轴上方,∴c>0,∴bc<0,抛物线与x轴有两个交点,∴△>0.故选D.
练习册系列答案
相关题目

小敏在某次投篮中,球的运动路线是抛物线y=﹣x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离L是(  )

A. 3.5m B. 4m C. 4.5m D. 4.6m

B 【解析】试题分析:如图,把C点纵坐标y=3.05代入y=x2+3.5中得: x=±1.5(舍去负值), 即OB=1.5, 所以L=AB=2.5+1.5=4米,故选B.

已知关于x的方程x2+(2m+1)x+m2+2=0有两个不相等的实数根,试判断直线y=(2m-3)x-4m+7能否经过点A(-2,4),并说明理由.

该直线不经过点A,理由见解析. 【解析】试题分析:根据已知求出b2﹣4ac=4m﹣7>0,确定2m﹣3和﹣4m+7的范围,从而得到图象经过一、三、四象限,即可判断答案. 试题解析:【解析】 该直线不经过点A.理由如下: ∵方程x2+(2m+1)x+m2+2=0有两个不相等的实数根,∴△=(2m+1)2-4(m2+2)=4m-7>0,∴2m->0,∴2m-3>0. 又由4m...

若二次函数y=ax2+bx+c(a≠0)的图象与x轴只有一个交点,则这个交点的坐标是_____.

(-,0) 【解析】【解析】 ∵二次函数y=ax2+bx+c(a≠0)的图象与x轴只有一个交点,∴△=b2-4ac=0,∴,令y=0,解得: .故答案为:(,0).

如图,已知抛物线y=x2-x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.

(1)直接写出A、D、C三点的坐标;

(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;

(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.

(1)A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3); (2)M点坐标为(2,-3)或(1+,3)或(1-,3); (3)在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(-2,0)或(6,6). 【解析】试题分析:(1)在中令,解得, ∴A(4,0) 、D(-2,0). 在中令,得,∴C(0,-3). ...

如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1、A2、A3…An,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1、M2、M3、…Mn,…都在直线L:y=x上;②抛物线依次经过点A1、A2、A3…An、….则顶点M2014的坐标为______________.

(4027,4027) 【解析】试题解析:M1(a1,a 1)是抛物线y1=(x- a 1)2+a1的顶点, 抛物线y=x2与抛物线y1=(x- a 1)2+ a 1相交于A1, 得x2=(x- a 1)2+ a 1, 即2a1x= a 12+ a 1, x=(a1+1). ∵x为整数点 ∴a1=1, M1(1,1); M2(a2,a 2)是抛...

抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x-1)2-4,则b,c的值分别为( )

A. b=2,c=-6 B. b=2,c=0

C. b=-6,c=8 D. b=-6,c=2

B 【解析】试题分析:先确定出平移后的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移前的抛物线的顶点坐标,然后写出平移前的抛物线的顶点式形式,然后整理成一般形式,即可得到b、c的值. 【解析】 函数y=(x﹣1)2﹣4的顶点坐标为(1,﹣4), ∵是向右平移2个单位,再向下平移3个单位得到, ∴1﹣2=﹣1,﹣4+3=﹣1, ∴平移前的抛物线的...

下列说法中错误的是( )

A .在函数y=-x2中,当x=0时y有最大值0

B.在函数y=2x2中,当x>0时y随x的增大而增大

C.抛物线y=2x2,y=-x2,中,抛物线y=2x2的开口最小,抛物线y=-x2的开口最大

D.不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点

C 【解析】由函数的解析式y=-x2,可知a=-1<0,得到函数的开口向下,有最大值y=0,故A正确; 由函数的解析式y=2x2,可知其对称轴为y轴,对称轴的左边(x<0),y随x增大而减小,对称轴的右边(x>0),y随x增大而增大,故B正确; 根据二次函数的性质,可知系数a决定开口方向和开口大小,且a的值越大开口越小,可知抛物线y=2x2的开口最小,抛物线y=-x2的开口第二小...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网