ÌâÄ¿ÄÚÈÝ
3£®£¨1£©µ±k=3£¬m=2ʱ£¬S¡÷ABE=$\frac{9}{2}$£¬
µ±k=4£¬m=3ʱ£¬S¡÷ABE=8£¬
µ±k=5£¬m=4ʱ£¬S¡÷ABE=$\frac{25}{2}$£»
£¨2£©¸ù¾Ý£¨1£©ÖеĽá¹û£¬²ÂÏëS¡÷ABEµÄ´óС£¬²¢Ö¤Ã÷ÄãµÄ²ÂÏ룻
£¨3£©µ±S¡÷ABE=8ʱ£¬ÔÚ×ø±êÆ½ÃæÄÚÓÐÒ»µãP£¬Æäºá×ø±êΪn£¬µ±ÒÔA£¬B£¬E£¬PΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐÎʱ£¬ÇëÖ±½Óд³ömÓënÂú×ãµÄ¹ØÏµÊ½£®
·ÖÎö £¨1£©Áîy=0£¬½â¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³ÌµÃ³öxµÄÖµ£¬¼´¿ÉµÃÖªµãAµÄ×ø±ê£¬Áîx=0Çó³öyÖµ£¬Óɴ˵óöBµãµÄ×ø±ê£¬ÔÙ¸ù¾ÝÕý·½ÐÎÐεÄÐÔÖÊÒÔ¼°DµãµÄºá×ø±êΪmµÃ³öµãD¡¢µãEµÄ×ø±ê£¬´úÈëk¡¢mµÄÖµµÃ³öµãA¡¢B¡¢E¡¢DËĵãµÄ×ø±ê£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©S¡÷ABE=$\frac{1}{2}{k}^{2}$£®ÓÉ£¨1£©µÃ³öÓÉk¡¢m±íʾµÄµãA¡¢B¡¢E¡¢DËĵãµÄ×ø±ê£¬½áºÏÈý½ÇÐεÄÃæ»ý¹«Ê½Çó³öS¡÷ABE¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©¸ù¾ÝS¡÷ABE=8ÕÒ³ökÖµ£¬ÉèµãPµÄ×ø±êΪ£¨n£¬y£©£®ÒÔA£¬B£¬E£¬PΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐÎÓÐÈýÖÖÇé¿ö£¬·ÖÇé¿ö¿¼ÂÇ£¬ÀûÓÃÆ½ÐÐËıßÐεÄÐÔÖÊÒÔ¼°×ø±êϵÖеãµÄÒâÒå¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©Áîy=-$\frac{1}{k}$x2+k=0£¬Ôòx2=k2£¬
½âµÃ£ºx1=-k£¬x2=k£¬
¡àµãAµÄ×ø±êΪ£¨-k£¬0£©£®
Áîx=0£¬Ôòy=k£¬
¡àµãBµÄ×ø±êΪ£¨0£¬k£©£®
¡ßDµãµÄºá×ø±êΪm£¬
¡àµãEµÄ×ø±êΪ£¨m£¬m£©£¬µãDµÄ×ø±êΪ£¨m£¬0£©£®
µ±k=3£¬m=2ʱ£¬A£¨-3£¬0£©£¬B£¨0£¬3£©£¬E£¨2£¬2£©£¬D£¨2£¬0£©£¬
S¡÷ABE=$\frac{1}{2}$AO•OB+$\frac{1}{2}$£¨OB+DE£©•OD-$\frac{1}{2}$AD•DE=$\frac{1}{2}$¡Á3¡Á3+$\frac{1}{2}$¡Á£¨3+2£©¡Á2-$\frac{1}{2}$£¨3+2£©¡Á2=$\frac{9}{2}$£»
µ±k=4£¬m=3ʱ£¬A£¨-4£¬0£©£¬B£¨0£¬4£©£¬E£¨3£¬3£©£¬D£¨3£¬0£©£¬
S¡÷ABE=$\frac{1}{2}$AO•OB+$\frac{1}{2}$£¨OB+DE£©•OD-$\frac{1}{2}$AD•DE=$\frac{1}{2}$¡Á4¡Á4+$\frac{1}{2}$¡Á£¨4+3£©¡Á3-$\frac{1}{2}$£¨4+3£©¡Á3=8£»
µ±k=5£¬m=4ʱ£¬A£¨-5£¬0£©£¬B£¨0£¬5£©£¬E£¨4£¬4£©£¬D£¨4£¬0£©£¬
S¡÷ABE=$\frac{1}{2}$AO•OB+$\frac{1}{2}$£¨OB+DE£©•OD-$\frac{1}{2}$AD•DE=$\frac{1}{2}$¡Á5¡Á5+$\frac{1}{2}$¡Á£¨5+4£©¡Á4-$\frac{1}{2}$£¨5+4£©¡Á4=$\frac{25}{2}$£®
¹Ê´ð°¸Îª£º$\frac{9}{2}$£»8£»$\frac{25}{2}$£®
£¨2£©S¡÷ABE=$\frac{1}{2}{k}^{2}$£®
Ö¤Ã÷£ºÓÉ£¨1£©Öª£ºA£¨-k£¬0£©£¬B£¨0£¬k£©£¬E£¨m£¬m£©£¬D£¨m£¬0£©£¬
S¡÷ABE=$\frac{1}{2}$AO•OB+$\frac{1}{2}$£¨OB+DE£©•OD-$\frac{1}{2}$AD•DE=$\frac{1}{2}$k•k+$\frac{1}{2}$£¨k+m£©m-$\frac{1}{2}$£¨k+m£©m=$\frac{1}{2}{k}^{2}$£®
£¨3£©ÉèµãPµÄ×ø±êΪ£¨n£¬y£©£®
¡ßS¡÷ABE=$\frac{1}{2}{k}^{2}$=8£¬
¡àk=4£®
µ±ÒÔA£¬B£¬E£¬PΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐÎʱ£¬·ÖÈýÖÖÇé¿ö£º
¢Ùµ±AB¡¢EPΪ¶Ô½ÇÏßʱ£¬Áî¶Ô½ÇÏߵĽ»µãΪM£¬Èçͼ1Ëùʾ£®![]()
¡ßËıßÐÎAEBPΪƽÐÐËıßÐΣ¬
¡àµãMƽ·ÖAB£¬µãMƽ·ÖEP£®
¡ßA£¨-4£¬0£©£¬B£¨0£¬4£©£¬E£¨m£¬m£©£¬P£¨n£¬y£©£¬
¡à-4+0=m+n£¬
¼´m+n=-4£»
¢ÚAB¡¢EPΪ¶Ô±ß£¬ÇÒµãPÔÚEµÄ×ó²àʱ£¬ÑÓ³¤ED£¬¹ýµãP×÷PN¡ÍEDÓÚµãN£¬Èçͼ2Ëùʾ£®![]()
¡ßËıßÐÎAEBPΪƽÐÐËıßÐΣ¬
¡àAB=PE£¬ÇÒAB¡ÎPE£¬
¡àAO=PN£®
¡ßA£¨-4£¬0£©£¬B£¨0£¬4£©£¬E£¨m£¬m£©£¬P£¨n£¬y£©£¬
¡à0-£¨-4£©=m-n£¬
¼´m-n=4£»
¢ÛAB¡¢EPΪ¶Ô±ß£¬ÇÒµãPÔÚEµÄÓÒ²àʱ£¬ÑÓ³¤FE£¬¹ýµãP×÷PN¡ÍFEÓÚµãN£¬Èçͼ3Ëùʾ£®![]()
¡ßËıßÐÎAEBPΪƽÐÐËıßÐΣ¬
¡àAB=PE£¬ÇÒAB¡ÎPE£¬
¡àAO=PN£®
¡ßA£¨-4£¬0£©£¬B£¨0£¬4£©£¬E£¨m£¬m£©£¬P£¨n£¬y£©£¬
¡à0-£¨-4£©=n-m£¬
¼´n-m=4£®
×ÛÉÏ¿ÉÖª£ºµ±ÒÔA£¬B£¬E£¬PΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐÎʱ£¬mÓënÂú×ãµÄ¹ØÏµÊ½ÓÐm+n=-4£¬m-n=4ºÍn-m=4£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýÓë×ø±êÖáµÄ½»µãÎÊÌâ¡¢Èý½ÇÐεÄÃæ»ý¹«Ê½ÒÔ¼°Æ½ÐÐËıßÐεÄÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÕÒ³öµãA¡¢B¡¢E¡¢DËĵãµÄ×ø±ê£»£¨2£©ÓÃk¡¢m±íʾ³öµãA¡¢B¡¢E¡¢DËĵãµÄ×ø±ê£»£¨3£©½áºÏƽÐÐËıßÐεÄÐÔÖÊÕÒ³öm¡¢nÖ®¼äµÄ¹ØÏµ£®±¾ÌâÊôÓÚÖеµÌ⣬£¨1£©£¨2£©ÄѶȲ»´ó£»£¨3£©·ÖÈýÖÖÇé¿ö¿¼ÂÇ£¬²¿·Öͬѧ¾³£ÐԵĻáÂäÏÂÒ»Á½ÖÖÇé¿ö£¬Òò´ËÔÚÈÕ³£×öÌâʱҪעÒâÅàÑøº¢×ÓÃÇ×öÌâµÄÍêÕûÐÔ¡¢¿¼ÂÇÎÊÌâµÄÈ«ÃæÐÔ£®
| A£® | a•sin72¡ã | B£® | $\frac{a}{tan72¡ã}$ | C£® | $\frac{a}{cos18¡ã}$ | D£® | $\frac{a}{cos36¡ã}$ |