题目内容
7.若x,y都是正整数,x是6的倍数,且x2-y2=2016,这样的(x,y)共有3组.分析 由平方差公式可知x2-y2=(x+y)(x-y),(x+y)与 (x-y)同为奇数或者偶数,将2016分为两个偶数的积,分别解方程组即可.
解答 解:∵x2-y2=(x+y)(x-y),
2016=1008×2=504×4=336×6,
∴$\left\{\begin{array}{l}{x+y=1008}\\{x-y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x+y=504}\\{x-y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x+y=336}\\{x-y=6}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=505}\\{y=503}\end{array}\right.$或$\left\{\begin{array}{l}{x=254}\\{y=250}\end{array}\right.$或$\left\{\begin{array}{l}{x=171}\\{y=165}\end{array}\right.$.
∴满足条件的正整数对(x,y)的有3组.
故答案为:3.
点评 此题考查因式分解的实际运用,掌握平方差公式,明确两整数之和与两整数之积的奇偶性相同是解决问题的关键.
练习册系列答案
相关题目
12.设[t]表示不超过实数t的最大整数,令{t}=t-[t].已知实数x满足x3+$\frac{1}{{x}^{3}}$=18,则{x}+{$\frac{1}{x}$}=( )
| A. | $\frac{1}{2}$ | B. | 3$-\sqrt{5}$ | C. | $\frac{1}{2}$(3$-\sqrt{5}$) | D. | 1 |