题目内容

7.若x,y都是正整数,x是6的倍数,且x2-y2=2016,这样的(x,y)共有3组.

分析 由平方差公式可知x2-y2=(x+y)(x-y),(x+y)与 (x-y)同为奇数或者偶数,将2016分为两个偶数的积,分别解方程组即可.

解答 解:∵x2-y2=(x+y)(x-y),
2016=1008×2=504×4=336×6,
∴$\left\{\begin{array}{l}{x+y=1008}\\{x-y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x+y=504}\\{x-y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x+y=336}\\{x-y=6}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=505}\\{y=503}\end{array}\right.$或$\left\{\begin{array}{l}{x=254}\\{y=250}\end{array}\right.$或$\left\{\begin{array}{l}{x=171}\\{y=165}\end{array}\right.$.
∴满足条件的正整数对(x,y)的有3组.
故答案为:3.

点评 此题考查因式分解的实际运用,掌握平方差公式,明确两整数之和与两整数之积的奇偶性相同是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网