题目内容

3.如图所示,在△ABC中,AB=AC,∠A=36°.
(1)作∠ABC的平分线BD,交AC于点D(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)条件下,比较线段DA与BC的大小关系(不要求证明).

分析 (1)利用基本作图(作已知角的角平分线)作出BD;
(2)根据等腰三角形的性质和三角形内角和计算出∠ABC=∠C=72°,再利用角平分线的定义得到∠ABD=∠CBD=36°,然后根据等腰三角形的判定得到DA=DB,DB=DC,所以BD=AD.

解答 解:(1)如图所示,BD为所作;

(2)线段DA=BC.理由如下:
∵AB=AC,
∴∠ABC=∠C=$\frac{1}{2}$(180°-36°)=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°,
∴∠ABD=∠A,
∴DA=DB,
∵∠BDC=∠A+∠ABD=72°,
∴∠BDC=∠C,
∴BD=BC,
∴AD=BD.

点评 本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网