题目内容

3.如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为(  )
A.$\frac{2}{3}π$-3B.$\frac{2}{3}π$-$\sqrt{3}$C.$\frac{4}{3}π$-$\sqrt{3}$D.$\frac{4}{3}π$-2

分析 利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=(圆的面积-正六边形的面积)×$\frac{1}{6}$,即可得出结果.

解答 解:∵⊙O的半径为2,
∴⊙O的面积为π×22=4π,
∵空白正六边形为六个边长为2的正三角形,
∴每个三角形面积为$\frac{1}{2}$×2×2×sin60°=$\sqrt{3}$,
∴正六边形面积为6$\sqrt{3}$,
∴阴影面积为(4π-6$\sqrt{3}$)×$\frac{1}{6}$=$\frac{2}{3}$π-$\sqrt{3}$,
故选:B.

点评 本题主要考查了正多边形和圆的面积公式,注意到阴影面积=(圆的面积-正六边形的面积)×$\frac{1}{6}$是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网