题目内容

7.已知二次函数y=ax2+bx+c的部分对应值如下表:
x-30135
y7-8-97
(1)求这个二次函数的解析式;
(2)当x=3时,求y的值.

分析 (1)把表中前三组对应值分别代入y=ax2+bx+c中得到关于a、b、c的方程组,然后解方程组求出a、b、c的值即可得到抛物线解析式;
(2)把x=3代入(1)中的解析式,计算对应的函数值即可.

解答 解:(1)把(-3,7)、(0,-8)、(1,-9)代入y=ax2+bx+c得$\left\{\begin{array}{l}{9a-3b+c=7}\\{c=-8}\\{a+b+c=-9}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=-2}\\{c=-8}\end{array}\right.$,
所以抛物线解析式为y=x2-2x-8;
(2)当x=3时,y=x2-2x-8=9-6-8=-5.

点评 本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网