(10分)如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?

3h. 【解析】试题分析:首先根据勾股定理逆定可证明△ABC是直角三角形,然后计算出∠BCD的度数,再根据直角三角形的性质算出DC的长,然后根据速度和路程可计算出多长时间后这人距离B送奶站最近. 试题解析:【解析】 过B作BD⊥公路于D.∵82+152=172,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°. ∵∠1=30°,∴∠BCD=180°-90°-...

如图所示,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=_______.

【解析】【解析】 ∵四边形ABCD为正方形,∴∠ABC=90°.∵△ABP绕点B顺时针方向旋转能与△CBP′重合,∴∠PBP′=∠ABC=90°,PB=P′B=2,∴△PBP′为等腰直角三角形,∴PP′=PB=. 故答案为: .

分式方程=1的解为(  )

A. x=﹣1 B. x= C. x=1 D. x=2

A 【解析】【解析】 去分母得:2x﹣1=x﹣2, 解得:x=﹣1, 经检验x=﹣1是分式方程的解, 则分式方程的解为x=﹣1. 故选:A.

计算:

(1) (2cos 45°-sin 60°)+

(2)sin 60°·cos 60°-tan 30°·tan 60°+sin245°+cos245°.

(1)2;(2) 【解析】试题分析:(1)先将特殊角的三角函数值代入,对最后一项的二次根式进行化简,然后再按运算顺序进行计算即可; (2)将特殊角的三角函数值代入,按运算顺序进行计算即可得. 试题解析:(1)原式==2; (2)原式=.

等腰三角形一腰上的高与腰长之比是1?2,则等腰三角形顶角的度数为(  )

A. 30° B. 50° C. 60°或120° D. 30°或150°

D 【解析】如图1,当高BD在三角形的内部时, ∵高BD是腰长AB的一半, ∴sin A=,∴∠A=30°; 如图2,当高CD在三角形的外部时, ∵高CD是腰长AC的一半, ∴sin∠1=,∴∠1=30°, ∴∠BAC=180°-30°=150°, ∴该三角形的顶角的度数是30°或150°, 故选D.

在Rt△ABC中,∠C=90°,tan B=,BC=2,则AC等于(  )

A. 3 B. 4 C. 4 D. 6

A 【解析】∵∠C=90°, ∴tan B=, ∴AC=BCtan B=2=3, 故选A.

在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形.依照图中标注的数据,请你计算空白部分的面积.

ab – ac – bc + c2 【解析】试题分析:把②向左平移c,④向上平移c,③先向上平移c,再向左平移c,使①②③④拼成一个长为(a-c),宽为(b-c)的矩形,然后根据矩形的面积公式进行计算即可. 试题解析: 如图,将四块空白部分向①拼拢(即平移),这样就形成了一个长为(a-c),宽为(b-c)的矩形. ∴S空白=(a-c)×(b-c)=ab – ac – bc ...

四边形ABCD是正方形.

(1)如图(1)所示,点G是BC边上任意一点(不与B,C两点重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.求证△ABF≌△DAE;

(2)在(1)中,线段EF与AF,BF的等量关系是____;(不需证明,直接写出结论即可)

(3)如图(2)所示,若点G是CD边上任意一点(不与C,D两点重合),作BF⊥AG于点F,DE⊥AG于点E,那么图中的全等三角形是____,线段EF与AF,BF的等量关系是____.(不需证明,直接写出结论即可)

EF=AF-BF △ABF≌△DAE EF=BF-AF 【解析】试题分析:(1)根据正方形的性质可知:△ABF≌△ADE; (2)利用全等三角形的性质,AE=BF,AF=DE,得出AF-BF=EF; (3)同理可得出图(2),△ABF≌△DAE,EF=BF-AF. (1) 证明:在正方形ABCD中,AB=AD,∠BAD=90°, ∴∠BAF+∠DAE=90°. ...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网