ÌâÄ¿ÄÚÈÝ
16£®Èç·Ö½â¶þ´ÎÈýÏîʽ£º2x2+5x-7£¬¾ßÌå²½ÖèΪ£º
¢ÙÊ×ÏȰѶþ´ÎÏîµÄϵÊý2·Ö½âΪÁ½¸öÒòÊýµÄ»ý£¬¼´2=2¡Á1£¬°Ñ³£ÊýÏî-7Ò²·Ö½âΪÁ½¸öÒòÊýµÄ»ý£¬¼´-7=-1¡Á7£»
¢Ú°´ÏÂÁÐͼʾËùʾµÄ·½Ê½Êéд£¬²ÉÓý»²æÏà³ËÔÙÏà¼ÓµÄ·½·¨£¬Ê¹Ö®½á¹ûÇ¡ºÃµÈÓÚÒ»´ÎÏîµÄϵÊý5£¬¼´2¡Á£¨-1£©+1¡Á7=5£®
¢ÛÕâÑù£¬¾Í¿ÉÒÔ°´Í¼Ê¾ÖÐÐéÏßËùÖ¸£¬¶Ô2x2+5x-7½øÐÐÒòʽ·Ö½âÁË£¬
¼´2x2+5x-7=£¨2x+7£©£¨x-1£©£®
Àý£º·Ö½âÒòʽ£º2x2+5x-7
½â£º2x2+5x-7=£¨2x+7£©£¨x-1£©
ÇëÄã×ÐϸÌå»áÉÏÊö·½·¨£¬²¢ÀûÓô˷¨¶ÔÏÂÁжþ´ÎÈýÏîʽ½øÐÐÒòʽ·Ö½â£º
£¨1£©x2+4x+3£¨2£©2x2+3x-20£®
·ÖÎö £¨1£©½«³£ÊýÏî·Ö½âΪ3ºÍ1£¬½ø¶ø·Ö½âÒòʽµÃ³ö´ð°¸£»
£¨2£©ÀûÓÃax2+bx+c£¨a¡Ù0£©Ð͵Äʽ×ÓµÄÒòʽ·Ö½âÕâÖÖ·½·¨µÄ¹Ø¼üÊǰѶþ´ÎÏîϵÊýa·Ö½â³ÉÁ½¸öÒòÊýa1£¬a2µÄ»ýa1•a2£¬
°Ñ³£ÊýÏîc·Ö½â³ÉÁ½¸öÒòÊýc1£¬c2µÄ»ýc1•c2£¬²¢Ê¹a1c2+a2c1ÕýºÃÊÇÒ»´ÎÏîb£¬ÄÇô¿ÉÒÔÖ±½Óд³É½á¹û£ºax2+bx+c=£¨a1x+c1£©£¨a2x+c2£©£¬½ø¶øµÃ³ö´ð°¸£®
½â´ð ½â£º£¨1£©x2+4x+3=£¨x+3£©£¨x+1£©£»
£¨2£©2x2+3x-20=£¨x+4£©£¨2x-5£©£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËÊ®×ÖÏà³Ë·¨·Ö½âÒòʽ£¬ÕýÈ··Ö½â³£ÊýÏîÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®ÏÂÁÐÊǶþÔªÒ»´Î·½³Ì×éµÄÊÇ£¨¡¡¡¡£©
| A£® | $\left\{\begin{array}{l}{\frac{1}{x}+y=4}\\{x-y=1}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=9}\\{x+y=4}\end{array}\right.$ | ||
| C£® | $\left\{\begin{array}{l}{x+y=4}\\{xy=4}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{3x+5y=25}\\{x+10y=25}\end{array}\right.$ |