题目内容
如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE上的中点,且S△ABC=4cm2,则S△BEF的值为( )
A. 2 cm2 B. 1 cm2 C. cm2 D. cm2
已知a=12.3是由四舍五入得到的近似数,则a的可能取值范围是( )
A. 12.25≤a≤12.35 B. 12.25≤a<12.35
C. 12.25<a≤12.35 D. 12.25<a<12.35
命题:直角三角形两条直角边的平方和等于斜边的平方,其逆命题是_____________。
如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=______cm.
如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于( )
A. 5 B. 4 C. 3 D. 2
为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌
粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价 (元)之间的函数关系式;(4分)
(2)当每盒售价定为多少元时,每天销售的利润 (元)最大?最大利润是多少?(6分)
如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧 上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是( )
A. 15° B. 20° C. 25° D. 30°
先化简,再求值: ,其中 ,