题目内容

10.如图,在菱形ABCD中,对角线AC和BD交于点O,分别过点B、C作BE∥AC,CE∥BD,BE与CE交于点E.
(1)求证:四边形OBEC是矩形;
(2)当∠ABD=60°,AD=2$\sqrt{3}$时,求∠EDB的正切值.

分析 (1)先依据平行四边形的定义证明四边形OBEC为平行四边形,然后再依据矩形的性质得到∠COB=90°,故此四边形OBEC是矩形;
(2)依据有一个角为60°的等腰三角形是等边三角形可得到BD=2$\sqrt{3}$,然后利用特殊锐角三角函数值可求得AO的长,从而得到BE的长,最后利用锐角三角函数的定义求解即可.

解答 解:(1)∵BE∥AC,CE∥BD,
∴四边形OBEC为平行四边形.
∵ABCD为菱形,
∴AC⊥BD.
∴∠BOC=90°.
∴四边形OBEC是矩形.
(2)∵AD=AB,∠DAB=60°,
∴△ABD为等边三角形.
∴BD=AD=AB=2$\sqrt{3}$.
∵ABCD为菱形,∠DAB=60°,
∴∠BAO=30°.
∴OC=OA=3.
∴BE=3
∴tan∠EDB=$\frac{BE}{BD}$=$\frac{3}{2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$.

点评 本题主要考查的是矩形的判定、菱形的性质、锐角三角函数的定义、特殊锐角三角函数值,熟练掌握相关图形的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网