题目内容

14.如图,已知直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E,求证:DE是⊙O的切线.

分析 连结OD,如图,由AD平分∠CAM得∠1=∠2,加上∠2=∠3,则∠1=∠3,于是可判断OD∥MN,由于DE⊥MN,所以OD⊥DE,则可根据切线的判定定理得到DE是⊙O的切线.

解答 证明:连结OD,如图,
∵AD平分∠CAM,
∴∠1=∠2,
∵OA=OD,
∴∠2=∠3,
∴∠1=∠3,
∴OD∥MN,
∵DE⊥MN,
∴OD⊥DE,
∴DE是⊙O的切线.

点评 本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网