题目内容
9.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为90万元,今年销售额只有80万元.(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知B款汽车每辆进价为7.5万元,每辆售价为10.5万元,A款汽车每辆进价为6万元,若卖出这两款汽车15辆后获利不低于38万元,问B款汽车至少卖出多少辆?
分析 (1)设今年5月份A款汽车每辆售价为x万元,则去年同期A款汽车每辆售价为(x+1)万元,根据数量=总价÷单价结合今年5月份与去年同期销售数量相等,即可得出关于x的分式方程,解之并检验后即可得出结论;
(2)设B款汽车卖出m辆,则A款汽车卖出(15-m)辆,根据总利润=单辆利润×销售数量结合获利不低于38万元,即可得出关于m的一元一次不等式,解之取其最小值即可.
解答 解:(1)设今年5月份A款汽车每辆售价为x万元,则去年同期A款汽车每辆售价为(x+1)万元,
根据题意得:$\frac{90}{x+1}$=$\frac{80}{x}$,
解得:x=8,
经检验,x=8是原方程的解.
答:今年5月份A款汽车每辆售价为8万元.
(2)设B款汽车卖出m辆,则A款汽车卖出(15-m)辆,
根据题意得:(10.5-7.5)×m+(8-6)×(15-m)≥38,
解得:m≥8.
答:若卖出这两款汽车15辆后获利不低于38万元,B款汽车至少卖出8辆.
点评 本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)数量=总价÷单价结合今年5月份与去年同期销售数量相等,列出关于x的分式方程;(2)根据总利润=单辆利润×销售数量结合获利不低于38万元,列出关于m的一元一次不等式.
练习册系列答案
相关题目
19.
某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.
训练后篮球定时定点投篮测试进球数统计表
请你根据图表中的信息回答下列问题:
(1)选择长跑训练的人数占全班人数的百分比为10%,该班学生的总人数为40;
(2)训练后篮球定时定点投篮人均进球数为5;
(3)若将选择篮球的同学的进球数写在外观、大小一样的枝条上,放在不透明的盒子中,搅拌均匀后,从中抽取一张,则抽到4的概率是多少?
| 进球数(个) | 8 | 7 | 6 | 5 | 4 | 3 |
| 人数 | 2 | 1 | 4 | 7 | 8 | 2 |
请你根据图表中的信息回答下列问题:
(1)选择长跑训练的人数占全班人数的百分比为10%,该班学生的总人数为40;
(2)训练后篮球定时定点投篮人均进球数为5;
(3)若将选择篮球的同学的进球数写在外观、大小一样的枝条上,放在不透明的盒子中,搅拌均匀后,从中抽取一张,则抽到4的概率是多少?
17.
如图,AB∥EF,CD⊥EF于点D,若∠BCD=140°,则∠ABC的度数为( )
| A. | 60° | B. | 50° | C. | 40° | D. | 30° |
1.
将如图所示的三棱柱展开,可以得到的图形是( )
| A. | B. | C. | D. |