ÌâÄ¿ÄÚÈÝ
12£®¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©Í¨¹ýÅä·½¿É»¯Îªy=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$µÄÐÎʽ£¬ËüµÄ¶Ô³ÆÖáÊÇx=-$\frac{b}{2a}$£¬¶¥µã×ø±êÊÇ£¨-$\frac{b}{2a}$£¬$\frac{4ac-{b}^{2}}{4a}$£©£»µ±a£¾0ʱ£¬ÔÚ¶Ô³ÆÖáµÄ×ó²àyËæxµÄÔö´ó¶ø¼õС£¬ÔÚ¶Ô³ÆÖáÓÒ²àyËæxµÄÔö´ó¶øÔö´ó£»µ±a£¼0ʱ£¬ÔÚ¶Ô³ÆÖáµÄ×ó²àyËæxµÄÔö´ó¶øÔö´ó£¬ÔÚ¶Ô³ÆÖáÓÒ²àyËæxµÄÔö´ó¶ø¼õС£®¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄͼÏóÓëy=ax2µÄͼÏóÏàͬ£¬Ö»ÊÇλÖò»Í¬£»y=ax2+bx+c£¨a¡Ù0£©µÄͼÏó¿ÉÒÔ¿´³Éy=ax2µÄͼÏóÉÏ¡¢ÏÂÆ½ÒÆ»ò×ó¡¢ÓÒÆ½ÒƵõ½µÄ£®
·ÖÎö y=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$ÊǶþ´Îº¯ÊýµÄ¶¥µãʽ£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖʼ´¿ÉÇó½â£®
½â´ð ½â£º¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©Í¨¹ýÅä·½¿É»¯Îªy=a£¨x+$\frac{b}{2a}$£©2+$\frac{4ac-{b}^{2}}{4a}$µÄÐÎʽ£¬ËüµÄ¶Ô³ÆÖáÊÇx=-$\frac{b}{2a}$£¬¶¥µã×ø±êÊÇ£¨-$\frac{b}{2a}$£¬$\frac{4ac-{b}^{2}}{4a}$£©£»µ±a£¾0ʱ£¬ÔÚ¶Ô³ÆÖáµÄ×ó²àyËæxµÄÔö´ó¶ø¼õС£¬ÔÚ¶Ô³ÆÖáÓÒ²àyËæxµÄÔö´ó¶øÔö´ó£»µ±a£¼0ʱ£¬ÔÚ¶Ô³ÆÖáµÄ×ó²àyËæxµÄÔö´ó¶øÔö´ó£¬ÔÚ¶Ô³ÆÖáÓÒ²àyËæxµÄÔö´ó¶ø¼õС£®
¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄͼÏóÓëy=ax2µÄͼÏóÏàͬ£¬Ö»ÊÇλÖò»Í¬£»y=ax2+bx+c£¨a¡Ù0£©µÄͼÏó¿ÉÒÔ¿´³Éy=ax2µÄͼÏóÉÏ¡¢ÏÂÆ½ÒÆ»ò×ó¡¢ÓÒÆ½ÒƵõ½µÄ£®
¹Ê´ð°¸Îª£ºx=-$\frac{b}{2a}$£¬£¨-$\frac{b}{2a}$£¬$\frac{4ac-{b}^{2}}{4a}$£©£¬¼õС£¬Ôö´ó£¬Ôö´ó£¬¼õС£»Ïàͬ£¬Î»Öã®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄÐÎʽ£¬¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¶¥µãʽΪy=a£¨x-h£©2+k£¨a£¬h£¬kÊdz£Êý£¬a¡Ù0£©£¬ÆäÖУ¨h£¬k£©Îª¶¥µã×ø±ê£¬¶Ô³ÆÖáΪx=h£¬º¯ÊýÔÚ¶¥µã´¦È¡×îÖµ£®