题目内容

如图,点O是△ABC内的一点,证明:OA+OB+OC>
1
2
(AB+BC+CA)
考点:三角形三边关系
专题:证明题
分析:在△ABO和△AOC以及△BOC中,分别利用三角形三边关系定理,两边之和大于第三边,然后把三个式子相加即可证得.
解答:证明:∵△ABO中,OA+OB>AB,
同理,OA+OC>CA,OB+OC>BC.
∴2(OA+OB+OC)>AB+BC+CA,
∴OA+OB+OC>
1
2
(AB+BC+CA).
点评:本题考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网