题目内容

已知抛物线y=x2-(m+1)x+m,

(1)求证:抛物线与x轴一定有交点;

(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1﹤0﹤x2,且,求m的值.

(1)证明见解析;(2)4. 【解析】试题分析:(1)先求出判别式,然后根据m为任意实数时,判别式的值是否大于等于0即可进行证明; (2)将所给的式子变形,然后利用根据与系数的关系可得=m+1, =m,代入即可得解. 试题解析:(1)∵∆=[-(m+1)]2-4m=(m-1)2,无论m为何值,都有(m-1)2≥0,即∆≥0, ∴抛物线与x轴一定有交点; (2)OA=-...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网