题目内容

19.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则PM的最小值为(  )
A.1.2B.1.3C.1.4D.2.4

分析 先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用相似三角形对应边成比例即可求得AP最短时的长,然后即可求出PM最短时的长.

解答 解:连结AP,如图所示:
∵∠BAC=90°,AB=3,AC=4,
∴BC=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵PE⊥AB,PF⊥AC,
∴四边形AFPE是矩形,
∴EF=AP.
∵M是EF的中点,
∴PM=$\frac{1}{2}$AP,
根据直线外一点到直线上任一点的距离,垂线段最短,
即AP⊥BC时,AP最短,同样PM也最短,
∴当AP⊥BC时,AP=$\frac{3×4}{5}$=2.4,
∴AP最短时,AP=2.4,
∴当PM最短时,PM=$\frac{1}{2}$AP=1.2.
故选A.

点评 此题主要考查了勾股定理、矩形的判定与性质、垂线段最短和直角三角形斜边上的中线性质;由直角三角形的面积求出AP是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网