题目内容

17.$\frac{1-2+3-4+…+19-20}{-2+4-6+8-…-38+40}$等于(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 原式分子分母结合后相加,约分即可得到结果.

解答 解:原式=$\frac{(1-2)+(3-4)+…+(19-20)}{(-2+4)+(-6+8)+…+(-38+40)}$=$\frac{-10}{20}$=-$\frac{1}{2}$,
故选D.

点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目
6.问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小二角形?
问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从特殊的情形入手:
探究一:以△ABC的3个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?
如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.
探究二:以△A BC的3个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?
在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点9在图①分割成的某个小三角形内部.不妨设点Q在△PAC的内部,如图②;另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨设点Q在PA上,如图③,显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.
探究三:以△ABC的二个顶点和它内部、的3个点P、Q、R,共6个点为顶点,可把△ABC分割成7个互不重叠的小二角形.
探究四:以△ABC的二个顶点和它内部的m个点,共(m+3)个点为顶点,可把△ABC分割成3+2(m-1)或2m+1个互不重叠的小三角形.
探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成4+2(m-1)个互不重叠的小三角形.
问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成n+2(m-1)个互不重叠的小三角形.
实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网