题目内容

已知AB是圆O的直径,点C在圆O上,∠CAB=15°,∠ACB的平分线交圆O于点D,若CD=
3
,则AB等于
 
考点:垂径定理,圆周角定理,解直角三角形
专题:
分析:首先根据题意作出图形,然后连接OC,过点O作OE⊥CD,构造直角三角形,利用勾股定理和含30°角的直角三角形的性质解答.
解答:解:如图,连接OC,过点O作OE⊥CD,垂足为点E,
∵∠CAB=15°,OC=OA,
∴∠OCA=15°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵CD平分∠ACB,
∴∠ACD=45°,
∴∠OCE=∠ACD-∠OCA=45°-15°=30°,
∴OC=2OE,
∵CE=
1
2
CD=
3
2

∴OE=
CE
tan30°
=
1
2

∴OC=1,
∴AB=2.
故答案为:2.
点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网